Global Mountain Biodiversity Assessment (GMBA)

A standardized delineation of the world's mountains


DOWNLOAD the latest version of the GMBA inventory

The GMBA mountain inventory is useful for various applications ranging from comparative research in mountain biodiversity to the spatial placement of biodiversity inventories and conservation planning. See below for a list of examples.


This inventory is based on the GMBA definitions of mountains and climatic belts. Details on the polygon delineation and additional information are available in Körner et al. 2017.


General information about the various files and formats, as well as log files of changes between subsequent versions are available in the online repository.

  • V1.0 includes 1003 mountain ranges with their name, coordinates, surface of mountain terrain stratified by dominant life zones, and human population estimates
  • V1.1 is identical to V1.0 but a number of polygon names in English have been corrected for typos and mistakes
  • V1.2 (latest) includes approximately 50 more polygons, primarily in Asia and South America

Applications and citations

  • GMBA Mountain Portal
  • Indigenous Mountain People Database

  • Klein et al (2019). An integrated community and ecosystem-based approach to disaster risk reduction in mountain systems. Environmental Science and Policy 94:143-152. (DOI: 10.1016/j.envsci.2018.12.034)
  • Kafash, et al. (2019). Environmental predictors for the distribution of the Caspian green lizard, Lacerta strigata eichwald, 1831, along elevational gradients of the Elburz mountains in northern Iran. Turkish Journal of Zoology 43(10):106-113. (DOI: 10.3906/zoo-1808-15)
  • Vieira et al. (2019). Ecological aspects of arbuscular mycorrhizal fungal communities in different habitat types of a Brazilian mountainous area. Ecological Research 34(1): 182-192 (DOI: 10.1111/1440-1703.1061)
  • Price et al. (2019). Mapping mountain areas: learning from Global, European and Norwegian perspectives. Journal of Mountain Science 16(1) (DOI: 10.1007/s11629-018-4916-3)
  • Alex Smith (2018). Janzen’s mountain passes hypothesis is comprehensively tested in its fifth decade. Proceedings of the National Academy of Sciences of the United States of America 115(49): 12337-12339 (DOI: 10.1073/pnas.1817774115)
  • Musthafa et al. (2018). Comparative study of spatial patterns and ecological niches of beetles in two Malaysian mountains elevation gradients. Journal of Insect Conservation 22 (5-6): 757-769 (DOI: 10.1007/s10841-018-0099-z)
  • Araneda et al. (2018). Bird diversity along elevational gradients in the Dry Tropical Andes of northern Chile: The potential role of Aymara indigenous traditional agriculture. PLoS ONE 13(12): e020754 (DOI: 10.1371/journal.pone.0207544)
  • Wen et al. (2018). Abundance of small mammals correlates with their elevational range sizes and elevational distributions in the subtropics. Ecography 41(11): 1888-1898 (DOI: 10.1111/ecog.03558)
  • Wen et al. (2018). Abundance–occupancy and abundance–body mass relationships of small mammals in a mountainous landscape. Landscape Ecology 33(10): 1711-1724 (DOI: 10.1007/s10980-018-0695-z)
  • Antonelli et al. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience 11(10): 718-725 (DOI: 10.1038/s41561-018-0236-z)
  • Rocchia et al. (2018). Can the effect of species ecological traits on birds’ altitudinal changes differ between geographic areas? Acta Oecologica 92: 26-34 (DOI: 10.1016/j.actao.2018.08.001)
  • Sayre et al. (2018). A new high-resolution map of world mountains and an online tool for visualizing and comparing characterizations of global mountain distributions. Mountain Research and Development 38(3): 240-249 (DOI: 10.1659/MRD-JOURNAL-D-17-00107.1)
  • Elsen et al. (2018). Global patterns of protection of elevational gradients in mountain ranges. Proceedings of the National Academy of Sciences of the United States of America 115(23): 6004-6009 (DOI: 10.1073/pnas.1720141115)
  • Quintero and Jetz (2018). Global elevational diversity and diversification of birds. Nature 555(7695): 246-250 (DOI: 10.1038/nature25794)
  • Nürk et al. (2018). Are the radiations of temperate lineages in tropical alpine ecosystems pre-adapted? Global Ecology and Biogeography, 27(3): 334-345 (DOI: 10.1111/geb.12699)
  • Zhu et al. (2018). Effects of altitude on county economic development in China. Journal of Mountain Science 15(2): 406-418 (DOI: 10.1007/s11629-017-4393-0)
  • Yu et al. (2018). Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Global Ecology and Biogeography (DOI: 10.1111/geb.12827)
  • Borges et al. (2018). Dissecting bird diversity in the Pantepui area of endemism, northern South America. Journal of Ornithology 159(4): 1073-1086 (DOI: 10.1007/s10336-018-1576-6)
  • Payne et al. (2017). Opportunities for research on mountain biodiversity under global change. Current Opinion in Environmental Sustainability 29: 40-47 (DOI: 10.1016/j.cosust.2017.11.001)
  • Moraes et al. (2017). Integrative overview of the herpetofauna from serra da mocidade, a granitic mountain range in northern Brazil. ZooKeys 2017(715): 103-159 (DOI: 10.3897/zookeys.715.20288)