Global Mountain Biodiversity Assessment (GMBA)

A standardized delineation of the world's mountains

 

DOWNLOAD the latest version of the GMBA inventory

The GMBA mountain inventory is useful for various applications ranging from comparative research in mountain biodiversity to the spatial placement of biodiversity inventories and conservation planning. See below for a list of examples.

Methods

This inventory is based on the GMBA definitions of mountains and climatic belts. Details on the polygon delineation and additional information are available in Körner et al. 2017.

Versions

General information about the various files and formats, as well as log files of changes between subsequent versions are available in the online repository.

  • V1.0 includes 1003 mountain ranges with their name, coordinates, surface of mountain terrain stratified by dominant life zones, and human population estimates
  • V1.1 is identical to V1.0 but a number of polygon names in English have been corrected for typos and mistakes
  • V1.2 (latest) includes approximately 50 more polygons, primarily in Asia and South America

Applications

Citations

  • Moraes et al. (2017). Integrative overview of the herpetofauna from Serra Da Mocidade, a granitic mountain range in northern Brazil. ZooKeys 2017(715): 103-159 (DOI: 10.3897/zookeys.715.20288)
  • Payne et al. (2017). Opportunities for research on mountain biodiversity under global change. Current Opinion in Environmental Sustainability 29: 40-47 (DOI: 10.1016/j.cosust.2017.11.001)
  • Smith (2018). Janzen’s mountain passes hypothesis is comprehensively tested in its fifth decade. Proceedings of the National Academy of Sciences of the United States of America 115(49): 12337-12339 (DOI: 10.1073/pnas.1817774115)
  • Musthafa et al. (2018). Comparative study of spatial patterns and ecological niches of beetles in two Malaysian mountains elevation gradients. Journal of Insect Conservation 22 (5-6): 757-769 (DOI: 10.1007/s10841-018-0099-z)
  • Araneda et al. (2018). Bird diversity along elevational gradients in the Dry Tropical Andes of northern Chile: The potential role of Aymara indigenous traditional agriculture. PLoS ONE 13(12): e020754 (DOI: 10.1371/journal.pone.0207544)
  • Wen et al. (2018). Abundance of small mammals correlates with their elevational range sizes and elevational distributions in the subtropics. Ecography 41(11): 1888-1898 (DOI: 10.1111/ecog.03558)
  • Wen et al. (2018). Abundance–occupancy and abundance–body mass relationships of small mammals in a mountainous landscape. Landscape Ecology 33(10): 1711-1724 (DOI: 10.1007/s10980-018-0695-z)
  • Antonelli et al. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience 11(10): 718-725 (DOI: 10.1038/s41561-018-0236-z)
  • Rocchia et al. (2018). Can the effect of species ecological traits on birds’ altitudinal changes differ between geographic areas? Acta Oecologica 92: 26-34 (DOI: 10.1016/j.actao.2018.08.001)
  • Sayre et al. (2018). A new high-resolution map of world mountains and an online tool for visualizing and comparing characterizations of global mountain distributions. Mountain Research and Development 38(3): 240-249 (DOI: 10.1659/MRD-JOURNAL-D-17-00107.1)
  • Elsen et al. (2018). Global patterns of protection of elevational gradients in mountain ranges. Proceedings of the National Academy of Sciences of the United States of America 115(23): 6004-6009 (DOI: 10.1073/pnas.1720141115)
  • Quintero and Jetz (2018). Global elevational diversity and diversification of birds. Nature 555(7695): 246-250 (DOI: 10.1038/nature25794)
  • Nürk et al. (2018). Are the radiations of temperate lineages in tropical alpine ecosystems pre-adapted? Global Ecology and Biogeography, 27(3): 334-345 (DOI: 10.1111/geb.12699)
  • Zhu et al. (2018). Effects of altitude on county economic development in China. Journal of Mountain Science 15(2): 406-418 (DOI: 10.1007/s11629-017-4393-0)
  • Yu et al. (2018). Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Global Ecology and Biogeography (DOI: 10.1111/geb.12827)
  • Borges et al. (2018). Dissecting bird diversity in the Pantepui area of endemism, northern South America. Journal of Ornithology 159(4): 1073-1086 (DOI: 10.1007/s10336-018-1576-6)
  • Hoorn et al. (2018). Mountains, climate and biodiversity: an introduction. Mountains, Climate and Biodiversity, Wiley
  • Beria et al. (2018). Understanding snow hydrological processes through the lens of stable water isotopes. Water 5(6): e1311. (DOI:10.1002/wat2.1311)
  • Onditi et al. (2019). Morphological and genetic characterization of Mount Kenya brush-furred rats (Lophuromys Peters 1874); relevance to taxonomy and ecology. Mammal Research (DOI:10.1007/s13364-019-00470-1)
  • Torres et al. (2019). Mountain summit detection with Deep Learning: evaluation and comparison with heuristic methods. Applied Geomatics (DOI: 10.1007/s12518-019-00295-2)
  • Wrzesien et al. (2019). Characterizing biases in mountain snow accumulation from global data sets. Water Resources Research 55(11): 9873-9891 (DOI: 10.1029/2019WR025350)
  • Callisto et al. (2019). A Humboldtian approach to mountain conservation and freshwater ecosystem services. Frontiers in Environmental Sciences (DOI: 10.3389/fenvs.2019.00195)
  • Onditi et al. (2019). Morphological and genetic characterization of Mount Kenya brush-furred rats (Lophuromys Peters 1874); relevance to taxonomy and ecology. Mammal Research (DOI: 10.1007/s13364-019-00470-1)
  • Colón López and Restrepo (2019). Water quality and socio-economic indicators are linked in a tropical watershed: emerging implications for the sustainable management of waterscapes. Wetlands (DOI: 10.1007/s13157-019-01232-0)
  • Onipchenko et al. (2019). Low floristic richness of afro-alpine vegetation of Mount Kenya is related to its small area. Alpine Botany (DOI: 10.1007/s00035-019-00229-z)
  • Lievens et al. (2019). Snow depth variability in the Northern Hemisphere mountains observed from space. Nature Communications:10(4629) (DOI: 10.1038/s41467-019-12566-y)
  • Chakraborty (2019). Mountains as vulnerable places: a global synthesis of changing mountain systems in the Anthropocene. GeoJournal:e02862 (DOI: 10.1007/s10708-019-10079-1)
  • Ge et al. (2019). Climatic seasonality is linked to the occurrence of the mixed evergreen and deciduous broad-leaved forests in China. Ecosphere (9):e02862 (DOI: 10.1002/ecs2.2862)
  • Rahbek et al. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365(6458)": 1108-1113 (DOI: 10.1126/science.aax0149)
  • Encalada et al. (2019). A global perspective on tropical montane rivers. Science 365(6458)": 1124-1129 (DOI: 10.1126/science.aax1682)
  • Porro et al. (2019). Could plant diversity metrics explain climate-driven vegetation changes on mountain summits of the GLORIA network? Biodiversity and Conservation. (DOI: 10.1007/s10531-019-01837-1)
  • Sati (2019). Himalaya on the Threshold of Change. Advances in Global Change Research 66 (DOI: 10.1007/978-3-030-14180-6)
  • Kidane et al. (2019). Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecology and Conservation (DOI: 10.1016/j.gecco.2019.e00670)
  • Bruelheide et al (2019). sPlot - a new tool for global vegetation analyses. Journal of Vegetation Science (DOI: 10.1111/jvs.1271)
  • Bärtschi et al. (2019). Elevational richness patterns of shpingid moths support area effects over climatic drivers in a near-global analysis. Global Ecology and Biogeography (DOI: 10.1111/geb.12903)
  • Klein et al. (2019). An integrated community and ecosystem-based approach to disaster risk reduction in mountain systems. Environmental Science and Policy 94:143-152. (DOI: 10.1016/j.envsci.2018.12.034)
  • Klein et al. (2019). Catalyzing transformations to sustainability in the world's mountains. Earths' Future (DOI: 10.1029/2018EF001024)
  • Kafash, et al. (2019). Environmental predictors for the distribution of the Caspian green lizard, Lacerta strigata eichwald, 1831, along elevational gradients of the Elburz mountains in northern Iran. Turkish Journal of Zoology 43(10):106-113. (DOI: 10.3906/zoo-1808-15)
  • Vieira et al. (2019). Ecological aspects of arbuscular mycorrhizal fungal communities in different habitat types of a Brazilian mountainous area. Ecological Research 34(1): 182-192 (DOI: 10.1111/1440-1703.1061)
  • Price et al. (2019). Mapping mountain areas: learning from Global, European and Norwegian perspectives. Journal of Mountain Science 16(1) (DOI: 10.1007/s11629-018-4916-3)
  • Kuzemko et al. (2019). Palaearctic Grasslands 40. Eurasian Dry Grassland Group. (DOI: 10.21570/EDGG.PG.40)
  • Ahmad et al. (2020). Patterns of plant communities along vertical gradient in Dhauladhar Mountains in Lesser Himalayas in North-Western India. Science of The Total Environment 716 (DOI: 10.1016/j.scitotenv.2020.136919)
  • Bian et al. (2020). Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing 162: 63-76 (DOI: 10.1016/j.isprsjprs.2020.02.011)
  • Dagallier et al. (2020). Cradles and museums of generic plant diversity across tropical Africa. New Phytologist 225(5): 2196-2213 (DOI: 10.1111/nph.16293)
  • Elsen et al. (2020). Topography and human pressure in mountain ranges alter expected species responses to climate change. Nature communications 11: 1984 (DOI: 10.1038/s41467-020-15881-x)
  • Gomez-Diaz and Villalobos. (2020). Montañas: cómo se definen y su importancia para la biodiversidad y la humanidad. CIENCIA ergo-sum, 27(2) (DOI: 10.30878/ces.v27n2a9)
  • Guedes et al. (2020). Diversity, endemism, and evolutionary history of montane biotas outside the Andean region. In: Rull V., Carnaval A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham (DOI: 10.1007/978-3-030-31167-4_13)
  • Hrivniak et al. (2020). The impact of Miocene orogeny for the diversification of Caucasian Epeorus (Caucasiron) mayflies (Ephemeroptera: Heptageniidae). Molecular Phylogenetics and Evolution 146: 106735 (DOI: 10.1016/j.ympev.2020.106735)
  • Hu et al. (2020). Contrasting floristic diversity of the Hengduan Mountains, the Himalayas and the Qinghai-Tibet Plateau sensu stricto in China. Frontiers in Ecology and Evolution: Biogeography and Macroecology (DOI: 10.3389/fevo.2020.00136 )
  • Immerzeel et al. (2020). Importance and vulnerability of the world's water towers. Nature 577(7790): 364-369 (DOI: 10.1038/s41586-019-1822-y)
  • Jäger al. (2020). Grassland biomass balance in the European Alps: current and future ecosystem service perspectives. Ecosystem Services 45 (DOI: 10.1016/j.ecoser.2020.101163)
  • Notarnicola (2020). Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sensing of Environment 243(111781): 364-369 (DOI: 10.1016/j.rse.2020.111781)
  • Su and Xiao (2020). Research and practice on socio-ecological systems resilience over cryosphere affected areas: progress and prospects. (Link)
  • Tenorio et al. (2020). The contribution of global mountains to the latitudinal diversity gradient. bioRxiv (DOI: 10.1101/2020.07.04.18822)
  • Testolin et al. (2020). Global distribution and bioclimatic characterization of alpine biomes. Ecography (DOI: 10.1111/ecog.05012)
  • Tito et al. (2020). Mountain ecosystems as natural laboratories for climate change experiments. Frontiers in Forests and Global Change (DOI: 10.3389/ffgc.2020.00038)
  • Thorn et al. (2020). A systematic review of participatory scenario planning to envision mountain social-ecological systems futures. Ecology and Society 25(3): 6 (DOI: 10.5751/ES-11608-250306)
  • Verrall and Pickering (2020). Alpine vegetation in the context of climate change: A global review of past research and future directions. Science of The Total Environment (DOI: 10.1016/j.scitotenv.2020.141344)
  • Viviroli et al. (2020). Increasing dependence of lowland populations on mountain water resources. Nature Sustainability (DOI: 10.1038/s41893-020-0559-9)