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PREFACE

Preface

The 2030 Agenda for Sustainable Development and its 17 Sustainable Development 
Goals (SDG) adopted by world leaders at the United Nations Sustainable Development 
Summit on 25 September 2015, provide a global framework for action on sustainable 
development for the next two decades. In support of the measurement and 
monitoring of progress towards the 17 SDGs and the 169 associated targets, the UN 
has established a Global Indicator Framework, designed around 232 SDG Indicators. 
In order to progress towards the achievement of the SDG goals and targets, this 
framework needs to be assessed using evidence, drawn from accurate and robust data, 
on a continuous basis. 

In July 2015, this need was already recognised by the UN’s Third International 
Conference for Financing for Development which produced a comprehensive 
framework—the Addis Ababa Action Agenda (AAAA). The agenda highlighted more 
than 100 actions to be taken to finance the sustainable development agenda and 
explicitly recognizes the need to fund “science, technology, innovation and capacity 
building,” as well as “data, monitoring and follow-up” [RD-1]. Therefore, monitoring 
and evaluation, based on accurate and robust data, must not only be at the centre of 
the Global Indicator Framework, but of the Agenda 2030 for Sustainable Development 
in its entirety. Indeed, data and evidence are the foundation of development policies 
and effective program implementation, as recognised by the Independent Expert 
Advisory Group on a Data Revolution for Sustainable Development (IEAG) [RD-2] 
in 2014. National Statistical Offices (NSOs) should generate a sustainable flow of 
high quality, timely, authoritative and accessible data for on-going monitoring of 
progress towards Agenda 2030. In response, the Global Partnership for Sustainable 
Development Data (GPSDD) was launched in 2015 in Addis Ababa and New York. It 
is an open, independent, multi-stakeholder network harnessing the data revolution 
for sustainable development. This message was further promulgated when the 
Cape Town Global Action Plan for Sustainable Development Data was launched in 
early 2017 and subsequently adopted by the United Nations Statistical Commission 
at its 48th Session [RD-3]. The Plan identified key actions in six strategic areas 
that could strengthen national statistical systems to respond to statistical needs to 
achieve the 2030 Agenda and beyond. The strategic areas were coordination and 
strategic leadership, innovation and modernization, strengthening of basic statistical 
activities, dissemination and use of sustainable development data, multi-stakeholder 
partnerships and statistical capacity building. 

Although this compendium recognises the contribution of all types of accurate and 
timely data to further sustainable development, it focuses particularly on location-
based or geospatial data, obtained by satellite-based Earth Observation (EO). 
However, integrated geospatial economic, social and environmental datasets are 
scarce for many countries, presenting an unrealised opportunity for space technology 
to play a key role in the global indicator framework. The compendium shows how 
to take advantage of this opportunity and highlights how geospatial information 
and EO, the collection of satellite and in-situ information about Earth’s physical, 
chemical and biological systems, by tracking and assessing their evolution through 
time, has the potential to complement traditional sources of socio-economic data for 
both indicators and targets. Although EO is an all-encompassing term for a range 
of EO instruments, both on the ground and in the air, this compendium focusses on 
geospatial information obtained by EO satellites. Satellite-based EO has the advantage 
of coverage of the most remote areas of the world, across political boundaries and 
oceans, with regular and repeat observations, and continuously over decades for most 
of free and open data. EO can improve and complement conventional statistical data 
collection, as well as provide new types of environmental information. For example, 
censuses and household surveys are costly to administer over large territories and 
therefore have limitations such as sparse sampling regimes and poor coverage in 
remote areas. EO can remotely map land cover over time from local to regional 

http://bit.ly/AAAAFundDev
http://www.undatarevolution.org/wp-content/uploads/2014/11/A-World-That-Counts.pdf 
https://unstats.un.org/sdgs/hlg/Cape_Town_Global_Action_Plan_for_Sustainable_Development_Data.pdf
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scales, from which economic use of the land can be inferred, supporting census and 
household surveys and filling information gaps. 

This report shows how EO technologies can and should fit into national statistical 
systems for monitoring the progress indicators as well as setting the targets of the 
SDG framework. In addition, earth observation has the potential to demonstrate how 
new and relevant indicators for the SDG framework could be developed. It illustrates 
how observations can directly or indirectly support indicators, and how countries can 
set and plan their SDG targets using EO-based support tools. Importantly it shows 
how earth observation can support evidence-based decision making in support of 
sustainable development policies. There is clearly huge potential for involving the 
wide range of current and emerging Earth Observation products in target setting and 
indicator monitoring. For instance, consistent, comparable and readily available time 
series of relevant earth observations will go a long way to supporting countries in 
meeting their monitoring and reporting commitments. Access to earth observations 
in a ready-to-use format would enable countries to build capacity in developing 
methodologies where EO is a sustainable source of primary observation. If this need 
were met it would greatly enhance our ability to keep global sustainable development 
under proper review and take well informed policy decisions to achieve some goals.

Key Recommendations

This compendium underlines the important contribution that satellite-based EO can 
make to the indicator framework of Agenda 2030. It shows that up to 34 indicators 
can be either directly (17 indicators) or indirectly (17 indicators) informed with EO data 
across 29 targets and 11 goals. Not only are there potential technical improvements 
afforded by EO in the indicator methodologies but there are also multiple benefits 
of EO for supporting the indicator framework in the long term. Data continuity has 
improved greatly with the advent of the Sentinel satellite constellations from the 
European Copernicus Programme, with Sentinel-1A launched in 2014, and the USGS/
NASA Landsat 8 continuity mission launched in 2013. These are publicly funded 
EO missions which are supported by open and free data policies, democratising 
access to EO data for all. The technical infrastructure needed to process and extract 
meaningful information from EO data has matured with the advent of advanced 
cloud computing and parallel processing systems. Inter-agency coordination has also 
improved thanks to the efforts of the Group on Earth Observations (GEO) and the 
Committee on Earth Observation Satellites (CEOS) to listen to the needs of countries, 
coupled with capacity building efforts specifically targeting developing countries. 
However, ongoing efforts are needed to build on this momentum and to ensure 
continual progress in developing the potential of EO to inform Agenda 2030, in 
particular that we adhere to the principle of the SDGs “that no one be left behind”. 

Below are some key recommendations, drawn from evidence presented throughout 
this compendium, which outline how the global EO and SDG community should 
proceed in bringing the full potential of EO to Agenda 2030.

1. �Communicate and demonstrate the potential of satellite 
Earth Observation so that it can be fully exploited in indicator 
methodologies

EO brings new and exciting possibilities for the methodologies of 34 of the 
SDG indicators, as well as in national target setting for a least 29 SDG targets. 
Yet this potential has not been clearly communicated to date, in particular to 
countries and statisticians who need the data the most. There is an ever 
increasing number of civilian space agency funded and commercial EO satellites 
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in operation which has raised the expectation that many environmental, 
economic and social change can be measured from space. This expectation 
should now be fulfilled with concrete action. A first step is to communicate 
the success stories and the barriers which have been overcome and no 
longer restrict EO data use worldwide. Previous limitations in satellite sensor 
performance in certain geographical settings, e.g. in areas prone to cloud cover, 
have been overcome by launching satellites in constellation, increasing the 
probability of clear observations. The time scales of EO data availability have 
also increased, e.g. for indicators requiring historical baselines there are now 
continual, multi-decadal EO data records, with Landsat time series spanning 
from the late 1970s to the present. Moreover, since then systematic global 
coverage by multiple missions has expanded to reach almost all locations on 
Earth, as is the case today. The main limitation now is not if EO data exists 
but where it can be stored, accessed and in a format ready to be used. Finally, 
accuracy of EO data is improving, both at the point of image acquisition, and 
in derived products such as land cover, atmospheric constituents and ocean 
colour – just like statistical data, the accuracies of these derived datasets 
need to be clearly documented by both communities (EO and statistics) to 
meet the demands of statistical rigour, demanded by the SDG indicators. 

2.� �Information flows need to be improved to inform SDG related 
decision making

The flow of environmental information from EO to geospatial datasets to 
indicators and into the hands of policy makers in decision making fora should 
be streamlined within countries. Custodian agencies are UN bodies (and 
sometimes other international organisations), who are responsible for compiling 
and verifying country data. Although custodians have issued methodological 
guidelines at the country level, information must flow seamlessly if EO (as 
well as other forms of geospatial data) is to be integrated into national 
systems and processes. Potential bottlenecks, e.g. where information is 
exchanged between government ministries or from private to public sectors 
within countries, should be identified and appropriate strategies designed to 
improve data flow, e.g. using spatial data infrastructures. Furthermore, the 
Inter-Agency and Expert Group on SDG Indicators (IAEG-SDGs) members 
and Inter Governmental Organisations such as the UN should explore the 
demand side of requests for EO, e.g. as stated by policy makers, rather than 
the current emphasis on the supply side.  It is important therefore to improve 
the cooperation between governments and agencies within countries, and to 
increase their awareness of EO. This could be achieved by focusing efforts 
on providing policy makers with the relevant information needed for them 
to become “EO literate,” so that they can see how gaps in the knowledge 
landscape can potentially be filled with EO data. 

3.� �Partnerships between National Statistical Offices (NSOs) and 
geospatial experts need to be strengthened 

There should be stronger collaboration between NSOs and EO experts, to 
enable the potential of EO to be fully realised within the national statistical 
systems. In particular, if EO data are to be merged with traditional sources of 
statistical data such as census and other big statistical data collection exercises. 
New and old ways of thinking need to be combined for a more complete 
integration of EO with statistics, as part of the end-to-end information flow 
to decision makers. In many countries the statistical agencies, geospatial 
and remote sensing experts are to be found in different parts of government. 
Creating partnerships amongst the different agencies and departments is 
a first step to building an effective collaboration. When working together, 
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identifying and managing technical language differences (accuracy, validity, 
variables can refer to different things) should also be properly addressed. 
Finally, strong partnerships are especially beneficial to the communities when 
they are bolstered with training plans and capacity building efforts.

4. �Commercial image providers should be encouraged to work 
with countries on the provision of very high resolution earth 
observations

Commercial satellite operators generally provide access to the very high 
resolution satellite imagery needed for certain applications in SDG reporting. 
Some of the SDG indicators, especially those related to small scale 
environmental phenomena such as urban greening, waste water pollution and 
treatment, climate-smart agriculture in small-holder farming or disaster risk 
mapping necessitate measurements at very high spatial resolutions (VHR). 
Therefore, low to middle income countries in particular should be financially 
supported to access VHR imagery for SDG monitoring and reporting where 
costs for national or even sub-national coverage might be prohibitive. The 
Small Island Developing States (SIDS) are also one of the most impacted by 
environmental changes and would definitely benefit of accessing VHR imagery 
to help monitor their coastlines evolution, water quality or impacts of disasters. 
Data access agreements should be brokered between the commercial sector 
and companies in countries with the ministries responsible for SDG reporting. 
This could be a potential solution to greater access to such data. Ultimately 
the demand for VHR imagery should be passed onto space agencies or their 
third party providers if low to middle income countries are to be supported in 
the long term in meeting their SDG reporting needs. 
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INTRODUCTION

Introduction

Target audience

This report is intended as a resource for four communities: 
first and foremost are countries, consisting of multi-
disciplinary actors involved in indicator reporting at the 
national level and monitoring progress towards the 
SDGs; second are the custodian agencies responsible for 
indicator methodological development who can realise 
the opportunities for Earth Observation (EO) in indicator 
methodologies; third are policy makers interested in 
evidence that supports progressive, data-driven policy 
goals; fourth are EO specialists in order to identify how 
their work can contribute to the realisation of Agenda 
2030. We hope that the compendium will encourage an 
ongoing commitment from all stakeholders to realize the 
full potential of the invaluable set of EO tools, techniques 
and examples presented in this report. As a result, we hope 
indicator custodians and countries will take every available 
opportunity and creative step to enhance monitoring of 
sustainable development at the national, regional and 
global level.

The 2030 Agenda for Sustainable 
Development

The United Nations (UN) system has a long history of 
seeking to promote and address sustainable development 
across society and to establish governance frameworks 
to achieve it: 

• 1972: �UN Conference on the Human Environment 
(Stockholm), the first major conference on 
environmental sustainability marking a political 
turning point; 

• 1992: �UN Conference on Environment and Development 
(The Earth Summit, Rio de Janeiro) that included 
Agenda 21 calling for global action in all areas of 
sustainable development spanning social, economic 
and environmental issues, and the initiation of the 
three Rio Conventions on sustainable development 
(UNFCCC – the UN Framework Convention on 
Climate Change; CBD – Convention on Biological 
Diversity; and UNCCD – the UN Convention to 
Combat Desertification); 

• 2000: �The Millennium Declaration that sought to reduce 
poverty and set out targets for the year 2015 
– known ultimately as the eight Millennium 
Development Goals (MDGs);

• 2002: �The World Summit on Sustainable Development 
(WSSD) also known as ‘Rio+10’ ( Johannesburg);

• 2012: �The UN Conference on Sustainable Development 
(‘Rio+20’, Rio de Janeiro) that resulted in ‘The 
Future We Want’ political outcome document, 
containing practical measures for implementation 
of sustainable development principles and a path 
to development of Sustainable Development 
Goals (SDGs).

Out of the consensus achieved at the UN Conference on 
Sustainable Development in Rio 2012 arose the 2030 
Agenda for Sustainable Development [RD-4]. The Agenda 
was agreed and adopted by the United Nations General 
Assembly in September 2015 where Heads of States and 
Governments recognised 17 Sustainable Development 
Goals and their 169 targets, as a framework for the 2030 
Agenda. Although the eight MDGs were realistic and easy 
to communicate, their scope was limited to issues that 
mostly concerned developing countries - child mortality, 
extreme poverty and universal access to education. 
Building on the MDGs, the SDGs embraced the three 
dimensions of sustainable development (environmental/
biosphere, social/society and economy, as illustrated in 
Figure 1), made them applicable to both developing and 
developed nations and identified concrete actions for 
people, planet, prosperity, peace and partnership. They 
also emphasise integration, coherence, indivisibility– 
and an underpinning philosophy of “we will leave no 
one behind”. Overall the Implementation of the 2030 
Agenda requires a more holistic, coherent and integrated 
approach at national, regional and global levels. It is the 
responsibility of governments to set and meet national 
targets that collectively will achieve the global ambition. 
National policies to implement the 2030 Agenda need to 
address inter-linkages within the social, economic and 
environmental dimensions of sustainable development. 
This presents unprecedented challenges as well as 
opportunities for joined-up, cross-sectorial thinking. 

An overview of the 17 Goals is provided below (Box 
1). The UN System has established a range of formal 
processes for achieving the sustainable development 
goals and monitoring progress towards the SDG Targets, 
with a particular focus on supporting the least developed 
countries. Further details on the individual SDGs and the 
169 targets can be found at the SDG knowledge platform 
[URL-1].

Each government is also requested to define their own 
targets, guided by the global level of ambition, but taking 
into account their national circumstances and specificities. 
The SDG process is supposed to be country-owned and 
country-led, which implies that countries are leading 
both on the delivery and the follow-up of the SDGs; in 
addition countries are encouraged to use the framework 
of globally agreed indicators to report on national 
progress. Currently there are 231 agreed global indicators 
covering the targets. This represents a huge monitoring 
burden on countries and will require a significant 

https://undocs.org/A/RES/70/1
https://sustainabledevelopment.un.org/sdgs
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level of capacity and resources, especially since not all 
indicators yet have fully established methodologies or 
available data at the global level. However, countries 
are free to choose which indicators to report on, and 
should use existing national statistics where possible, in 
order to compile indicators which measure the progress 
against the goals and targets. The SDG framework is 
a data-driven global agenda, and data is at the core 
of the SDGs. This indicates a transformative change 
in the way countries deal with development policies. 
Primarily, it sees a step change in how data are used to 
inform sustainable development polices and that data are 
recognised as of central importance in tracking progress 
through indicators. In addition to statistical data already in 
use by countries for national use, new and complementary 
sources of data are needed. Geospatial, or location-based 
information, is one of these data sources as recognised by 
the United Nations Agenda 2030 [RD-4]. Satellite-based 
Earth Observation, as a tool to acquire this geospatial 
information, is therefore a key technology which must be 

taken full advantage of. Countries are also encouraged to 
align SDG reporting with the demands of other Multilateral 
Environmental Agreements (MEAs), especially those of 
the three Rio Conventions and frameworks such as the 
Sendai Framework for Disaster Risk Reduction [URL-2] and 
the New Urban Agenda [URL-3]. In theory, this alignment 
should allow countries to focus resources and increase 
reporting efficiency. 

The ability to disaggregate SDG indicators where relevant, 
into thematic areas related to age, gender, economic status, 
and income is a key tenet of the “leave no one behind” 
philosophy so as to better understand the circumstances of 
multiple groups within society including women, the elderly, 
children, those on low incomes and so on. Indicators should 
also be disaggregated spatially at the sub-national level, 
e.g. by administrative or functional units such as urban 
and rural areas. This concept of spatial disaggregation is 
an important consideration for the suitability of EO-based 
approaches in indicator methodologies.

Figure 1: Illustration of the 17 Sustainable Development Goals across the three spheres of sustainable development: biosphere, society and economy. 
Source: (Azote Images for Stockholm Resilience Centre)

https://www.unisdr.org/we/inform/publications/43291
http://habitat3.org/the-new-urban-agenda
https://undocs.org/A/RES/70/1
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Goal 1. 	 End poverty in all its forms everywhere. 

Goal 2. 	� End hunger, achieve food security and improved 
nutrition and promote sustainable agriculture. 

Goal 3. 	� Ensure healthy lives and promote well-being 
for all at all ages. 

Goal 4. 	� Ensure inclusive and equitable quality 
education and promote lifelong learning 
opportunities for all. 

Goal 5. 	� Achieve gender equality and empower all 
women and girls. 

Goal 6. 	� Ensure availability and sustainable 
management of water and sanitation for all. 

Goal 7. 	� Ensure access to affordable, reliable, 
sustainable and modern energy for all. 

Goal 8. 	� Promote sustained, inclusive and sustainable 
economic growth, full and productive 
employment and decent work for all. 

Goal 9. 	� Build resilient infrastructure, promote inclusive 
and sustainable industrialization and foster 
innovation. 

Goal 10. 	Reduce inequality within and among countries. 

Goal 11. 	�Make cities and human settlements inclusive, 
safe, resilient and sustainable. 

Goal 12. 	�Ensure sustainable consumption and 
production patterns.  

Goal 13. 	�Take urgent action to combat climate change 
and its impacts. 

Goal 14. 	�Conserve and sustainably use the oceans, 
seas and marine resources for sustainable 
development. 

Goal 15. 	�Protect, restore and promote sustainable use 
of terrestrial ecosystems, sustainably manage 
forests, combat desertification, and halt and 
reverse land degradation and halt biodiversity 
loss.  

Goal 16. 	�Promote peaceful and inclusive societies for 
sustainable development, provide access to 
justice for all and build effective, accountable 
and inclusive institutions at all levels.  

Goal 17. 	�Strengthen the means of implementation and 
revitalize the global partnership for sustainable 
development.

Box 1: The 17 Sustainable Development Goals (SDGs) of the  
2030 Agenda

Scope and purpose of the compendium

The UN 2030 Agenda and its Sustainable Development 
Goals (SDGs) has stated its commitment to “leave no one 
behind”. Countries will need to align their national policies 
with the SDGs to be able to achieve the goals, as well as 
setup mechanisms to measure progress and report on the 
SDG indicators against the Targets. 

In this spirit, this compendium is intended as a resource for 
all countries (National Statistical Offices and line ministries, 
which are national focal points for SDG monitoring and 
reporting) to realise the potential of Earth Observation (EO) 
technology to meet the informational needs of SDG targets 
and indicators and to gain an appreciation for how EO can be 
used to produce high quality, repeatable indicators to assess 
progress towards targets. The technical detail and broad 
treatment of the indicator framework within this compendium 
will also be valuable to the UN Custodian Agencies, the UN 
Statistical Commission and its Inter-Agency and Expert Group 
on SDG Indicators (IAEG-SDGs), the UN Global Working Group 
on Big Data including a team on Geo-spatial information and 
satellite imagery [URL-4], and the UN Committee of Experts 
on Global Geospatial Information Management (UN-GGIM, 
established in July 2011) so that efforts can be aligned and 
duplication avoided between these various initiatives. The EO 
community should also find it useful, especially those who are 
unaware of the opportunities for EO in the SDGs. 

The success of the SDGs themselves relies on access to 
knowledge and technological development. The SDG targets 
9.5 (“Enhance scientific research, upgrade the technological 
capabilities of industrial sectors in all countries...”, 9.B (“Support 
domestic technology development, research and innovation 
in developing countries…” and 9.C (“Significantly increase 
access to information and communications technology…in 
least developed countries by 2020”) all mention innovation 
in support of sustainable development, especially SDG 9.C. 
This compendium therefore also makes a major contribution 
to Goal 17 which seeks to strengthen global partnerships and 
capacity building activities in support of the SDGs. 

Finally, the compendium is seen as a catalyst to stimulate 
dialogue among national governments, the UN system, the 
EO community, civil society, the private sector and other actors 
in order to mainstream EO in the SDG monitoring framework.

The compendium is complementary to the collaborative efforts 
of the Group on Earth Observations (GEO) and the Committee 
on Earth Observation Satellites (CEOS) to promote the use of 
EO for the SDGs. It can also be a useful resource to support 
other SDG stakeholders, e.g. the GEO Earth Observation for 
Sustainable Development Goals (EO4SDG) initiatives, the 
Inter Agency and Expert Group on SDG indicators (IAEG-
SDGs) and its Working Group on Geospatial Information 
(WGGI), the Global Partnership for Sustainable Development 
Data (GPSDD), National Line Ministries, National Mapping and 
Cadastral Authorities (NMCAs) and others beyond the science-
policy sphere (researchers and NGOs). 

https://unstats.un.org/bigdata/task-teams/earth-observation
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THE GLOBAL SDG INDICATOR FRAMEWORK

The Global SDG Indicator 
Framework

To keep track of progress towards the 17 Sustainable 
Development Goals and their associated 169 targets, 
a Global Indicator Framework of 232 SDG indicators1 , 
was officially adopted by the UN Statistical Commission 
at its 48th session in March 2017 following an open and 
transparent process involving stakeholders at all levels, and 
is reviewed annually. The framework collectively provides a 
management tool for countries to implement development 
strategies and report on progress toward the SDG Targets.
 
The UN Statistical Commission (UNSC), the highest 
authority of the UN statistical system and a functional 
commission of the UN Economic and Social Council (UN 
ECOSOC), has the mandate of overlooking the development 
and implementation of the Global Indicator Framework for 
the SDGs. The other major actors in the organisation of the 
global SDG indicator framework are shown in figure 2.  

The High Level Political Forum (HLPF)

Progress towards the Sustainable Development Goals is 
discussed by the UN’s High Level Political Forum which 
meets annually under the auspices of the UN Economic 
and Social Council (ECOSOC), and every four years under the 
auspices of United Nations General Assembly (UNGA). The 
Forum has a leadership and review function for the 2030 
Agenda, inviting countries to present Voluntary National 
Reviews (VNR) of progress towards implementation and 
presenting thematic reviews of specific goals and cross 
cutting themes. An annual review of progress is published 
as the Sustainable Development Goals Report [RD-5]. 

The 2018 meeting of the HLPF took place 9-18 July 
2018, at UN Headquarters in New York [RD-6]. At this 
occasion, a side-event on EO (“From up there to down 

1 This number of indicators will change as new indicators 
are added and others removed during annual reviews by the 
IAEG-SDGs and based on ad hoc requests by indicator custodi-
ans. Following the 2020 comprehensive review, the number of 
indicators of the Global Indicator Framework has been reduced 
to 231 indicators.

here - big space data and the SDGs”) was organised 
by Australia and showcased country examples to raise 
the awareness and promote the potential in using EO 
satellite-data in the process. The 2020 session of the 
HLPF, under the auspices of UN General Assembly, looked 
retrospectively and prospectively at the totality of the 
agenda for the ensuing four-year cycle, informed by the 
Global Sustainable Development Report. Head of States 
and governments called for a decade of actions to deliver 
the SDGs by 2030 and announced actions to advance the 
agenda. The SDG Summit resulted in the adoption of a 
political declaration: “Gearing up for a decade of action 
and delivery for sustainable development”.

The Inter-agency and Expert Group on SDG 
Indicators (IAEG-SDGs)

In March 2015 at its 46th session, UNSC created an Inter-
Agency and Expert Group on SDG Indicators (IAEG-SDGs), 
made up of representatives of National Statistical Offices 
(NSOs), to develop and implement the Global Indicator 
Framework for the monitoring of the Goals and Targets of 
the 2030 Agenda.

Indicators have been classified by the IAEG-SDGs into 
three tiers based on globally accepted methodologies 
and availability of data, as described in table 1  
[URL-5]. The classifications are reviewed annually based on 
changes in methodologies, data availability and progress 
in the development of indicators (as documented in 
work plans) [URL-6]. The classification in Table 1 reflects 
the decision made during the 51st session of the UN 
Statistical Commission in March 2020, following the 2020 
comprehensive review of the Global Indicator Framework. 

The updated tier classification contains 115 Tier I indicators, 
95 Tier II indicators and 19 indicators with a tier level 
between I and II, pending a data availability report. As 
of the 51st meeting of the UN Statistical Commission 
(UNSC) in March 2020, the global indicator framework does 
not contain any Tier III indicators anymore. In addition 
to these, there are 2 indicators that have multiple tiers 
(different components of the indicator are classified into 
different tiers). 

Figure 2: Organisation of the Global SDG Indicator Framework

UN Statistical Commission (UNSC)

National Line Ministries

WHO

UNICEF
UNSD

UNEP

WB

FAO
UNISCR

UNCCD
OECD

UN
Habitat

National Statistical OfficesIAEG-SDGs
Inter-agency and Expert Group on 
SDG Indicators

Working Group on GEO-spatial Information (WGGI)
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https://unstats.un.org/sdgs/report/2019
https://sustainabledevelopment.un.org/hlpf/2018
https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification
https://unstats.un.org/sdgs/iaeg-sdgs
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Tier Level Tier classification No. of indicators

I Conceptually clear, have established methodologies, 
standards are available and data are regularly pro-
duced by countries (at least 50 per cent of countries 
and of the population in every region where the 
Indicator is relevant).

115

II Conceptually clear, have established methodologies, 
standards are available but data are not regularly 
produced by countries

95

19 indicators with a tiering (between I and II) pending a data 
availability review. 

2 indicators will multiple tiers (different components of the 
indicator classified in tier levels I or II)

III There are no established methodologies and stan-
dards or methodology/standards are being devel-
oped/tested

02 

The tier classification of many indicators is still expected to 
change as methodologies are developed and data availability 
increases. Two comprehensive reviews  of the Global 
Indicator Framework are planned by the IAEG-SDGs to 
support the global monitoring of the 2030 Agenda without 
increasing the number of indicators. These reviews include 
the replacement, deletion, refinement or adjustment of 
indicators, and in a few selected cases, additional indicators. 
Additional indicators may be considered only in exceptional 
cases when a crucial aspect of a target is not being 
monitored or to address a critical or emerging new issue 
that is not monitored by the existing indicators. A deletion 
will be considered when the methodological development of 
a tier III indicator has stalled or not produced the expected 
results. The 2020 comprehensive review was conducted 
by the IAEG-SDGs and resulted in a revision of the Global 
Indicator Framework into 231 indicators classified either in 
Tier I or in Tier II. 

The implementation of the global indicator framework 
presents a considerable challenge even for the most 
advanced countries. As acknowledged by the UN General 
Assembly, existing statistical systems must be employed 
where possible while also leveraging new sources of 
information and observations, where needed, to supplement 
existing ones. At its 3rd meeting in Mexico (30 March-1 April 
2016), the IAEG-SDGs established three working groups 
to give guidance to countries on how to implement the 
monitoring framework by examining different data sources. 
The expert groups were on (i) Statistical Data and Metadata 
Exchange (SDMX), (ii) Geo-spatial information (WGGI), and 
(iii) Interlinkages of SDG Statistics, to allow for more closely 
integrated analyses in monitoring. The work of the WGGI is 
the most relevant for this compendium and will be examined.
 

2  As of the 51st UNSC (March 2020), the global indicator 
framework does not contain any Tier III indicators	

IAEG-SDGs Working Group on Geospatial 
Information (WGGI)

Although the development of the Global Indicator 
Framework has primarily been based on statistical data, 
it is recognized that geospatial information (including 
EO) provides new and consistent data sources that can 
support and inform official statistics and consequently 
the indicators for the SDGs. The mandate of the WGGI 
is to review the Global Indicator Framework through a 
“geographic location” lens, to identify existing geospatial 
data gaps and methodological issues, and to assess how 
geospatial information and EO can contribute to the Global 
Indicator Framework. The UN Committee of Experts on 
Global Geospatial Information Management (UN GGIM). 
which leads the global agenda for the management of 
geospatial information to address key global challenges, 
provides the secretariat for the WGGI through the Global 
Geospatial Information Management (GGIM) Section of the 
UN Statistics Division (UNSD).
  
The WGGI is therefore building on progress made by the 
UN-GGIM, the UN GGIM Expert Group on the Integration 
of Statistical and Geospatial Information (EG-ISGI), the 
Group on Earth Observations (GEO), the UN Global Working 
Group on Big Data (an outcome of the 45th Meeting of 
the UN Statistical Commission) and other various related 
groups, in the development of geospatial information and 
EO data inputs into the global indicator framework.

The WGGI - currently led by NSO representatives from 
Mexico and Ireland - has recently updated its terms of 
reference and membership to strengthen the coordination 
between the statistical and the geospatial information 

Table 1: Updated Tier classification based on the 2020 comprehensive review of the Global Indicator Framework and approved at the 51st session 
of the UN Statistical Commission (March 2020).
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communities. This includes a stronger connection to related 
activities, especially the work of custodian agencies, and 
a wide consultation on the status of geospatial data 
collection by countries. The WGGI workplan for the years 
2020 and 2021, includes the development of a SDG 
geospatial roadmap with a story-telling mechanism to 
better communicate the value of geospatial information and 
Earth Observations for the SDG indicators, the interlinkages 
with expert groups such as the EO4SDG initiative of the 
Group on Earth Observations (GEO), the showcase of best 
practice examples that will support Member States to 
improve their application of geospatial information and 
Earth observations, and the development of guidance and 
recommendation regarding the use of proven toolkits, 
including SDG EO toolkits. The Compendium represents an 
input to the work of the WGGI, through the contribution 
of GEO EO4SDG.

Custodian Agencies

Recognising the scale of the challenge in ensuring 
appropriate methodologies, in data availability and in 
consistent and comparable reporting by countries, the UN 
has appointed specialised Agencies to play a coordinating 
role as Custodians of SDG Indicators relevant to their area of 
expertise. Custodian agencies are the United Nations bodies 
(and in some cases, other international organizations) that 
are responsible for compiling international data series, 
metadata on SDG indicators, and for providing the data, 
along with regional and global aggregates, to the United 
Nations Statistics Division (UNSD). These agencies have 
also the mandate to compile monitoring guidelines for 
measuring and reporting on the indicators, to support 
countries on their implementation and strengthening 
national statistical capacities, and to collect national data 
for the global reporting mechanism. To do so, custodians 
are expected to coordinate closely with countries and 
their national statistical systems, regional bodies and 
international stakeholders on indicators’ development. 

Each SDG indicator has one nominated custodian, or co-
custodians as the case of the UN Environment Programme 
(UNEP) for the indicator 6.6.1 on waterrelated ecosystems 
and further partner agencies. Custodian agencies provided 
information on their data collection processes and also 
nominated a focal point for each of the indicator which 
can be useful when questions or issues arise about 
definitions, methods or data.

These agencies may publish the country data in their own 
databases and use it for thematic reporting. The country 
data need to be internationally comparable. Therefore, 
the custodians advocate for strict standards for countries 
to follow in the indicator methodologies. According to 

the 2030 Agenda, SDG reporting is the responsibility of 
countries and conducted in compliance with the UN’s 
Fundamental Principles of Official Statistics. These 
principles are considered a basic framework that national 
statistical offices and other statistical organizations must 
follow in recognizing official statistics as a public good.

To this end, the agencies are also responsible for developing 
international standards and recommending methodologies 
for monitoring. Noting that if they can “recommend” 
methodologies for standardization purpose, it is up to 
countries in the end to follow those methods or use others 
if more relevant to their national specificities. Measurement 
of some of the indicators is entirely achievable for many 
countries today, whilst tracking other indicators will require 
further improvements in underlying data and statistics, as 
well as corresponding availability of robust methodologies 
for National Statistical Offices (NSOs) and the relevant 
ministries to follow. 

Another central responsibility of the custodian agencies is 
to strengthen national monitoring and reporting capacity. 
When country data are missing, or collected using a different 
methodology or inconsistently reported by different sources, 
custodian agencies need to do estimates or adjust the data 
together with the specific countries. All final data submitted 
to UNSD for the global reporting on SDG indicators need to 
be validated and approved by countries. 

National Statistical Offices and line ministries

The responsibility for the collection of national data is 
country-specific and typically consists of an oversight 
authority – the National Statistical Offices (NSOs) – and line 
ministries responsible for their respective SDG Indicators. 
 
In order to assist NSOs with this effort, especially in 
countries low on capacity, the Cape Town Global Action 
Plan for Sustainable Development Data was conceived by 
the UNSC to recognise that the implementation of the SDGs 
requires coordinated action and considerable resources 
to process vast and disparate data sources [RD-4]. The 
action plan calls for enhanced capacity building in countries 
facing high data challenges, modernized national statistical 
systems, and encourages NSOs to embrace open data 
initiatives while integrating new data sources (including EO 
data) into statistical production programmes. The Global 
Action Plan proposes to leverage the efforts of the NSOs to 
modernize their national statistical systems, and also the 
efforts of international organizations and partnerships such 
as those of the EO community to promote EO in support of 
SDG monitoring.

https://undocs.org/A/RES/70/1
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The importance of Earth 
Observation in the indicator 
framework 

Advantages and opportunities of Earth 
Observation

Of the various forms of earth observations, including 
those from space-borne, airborne and in-situ platforms, 
satellite-based EO is the primary source of additional and 
complementary observations for national statistics at the 
appropriate scale for SDG reporting. Other forms of EO 
are also important at the national and subnational levels, 
especially for indicator disaggregation at finer spatial 
scales. 

There is huge potential for satellite EO to support the aim 
of the 2030 Agenda in “leaving no one behind” as, by 
nature, space-borne observations are borderless, impartial 
and inclusive of all. It is also a crucial data source for many 
of the indicators describing the environmental aspects 
of the planet and as a spatial disaggregation method of 
other geospatial statistics.  Designed for planetary-scale 
coverage, satellite EO has some key characteristics which 
make it an indispensable source of data for a select few 
SDG indicators and a supporting source of data for many 
others. Satellite EO provides:

1. �A synoptic view of the Earth’s surface: polar-orbiting, 
sun synchronous EO sensors observe wide swathes 
of the Earth in one pass, acquiring and storing large 
amounts of Earth surface imagery under constant 
conditions of solar illumination. Geostationary satellites 
observe hemispherical-scale patterns and can produce 
imagery up to every 15 minutes.

2.� �Regular and repeatable observations: polar-orbiting EO 
satellites orbit the Earth several times per day allowing 
consistent and systematic surface observations of the 
entire Earth surface. The continuity of observations in 
the long term is now guaranteed through dedicated, 
operational missions such as those of the Copernicus 
programme.

3. �Multi-annual time series of observations: since the 
1970s the average operational lifetime of an EO mission 
has almost tripled to today’s average mission lifetime of 
8.6 years [RD-7], enabling more stable and continuous 
observations from the same sensor over several years 
or more.

4. �Cost-effectiveness for monitoring remote and 
inaccessible areas: EO satellites are designed to observe 
any location on the Earth’s surface at some time in their 
orbit, albeit with some constraints around polar regions, 
permitting observation of areas otherwise inaccessible 
for ground based surveys.

In addition to these technical benefits, access to EO data 
is increasingly democratised and open with free and 
open data policies proliferating as well as the processing 
infrastructure to process them. The Copernicus programme 
of the European Commission has made data from its 
Sentinel satellite programme free for all – data continuity 
is an essential element of the Copernicus program. The 
United States Geological Survey (USGS) also liberated the 
vast archive of Landsat data in 2012, dating from 1978 
onwards, making it free for all to use. These progressive 
initiatives set a precedent for future EO programmes. Other 
geospatial data and statistics are increasingly free and 
open, in line with the GEO principles of sharing of data, 
information, knowledge, products and services. One of the 
main outcomes of GEO since its inception (2005) is actually 
to have stimulated the open data policy as it has gone 
from the exception to the global norm.

Earth Observation processing infrastructure

Coupled with this Big Data revolution, the EO data 
processing and analytics infrastructures has also advanced 
considerably. The widespread use of data architectures and 
servers on the internet, enabling “cloud computing”, has 
been a key element of this revolution. High Performance 
Computing (HPC) is another. HPC allows advanced 
processing infrastructure to run efficiently, reliably and 
quickly meaning that larger, more complex datasets, 
especially from new data sources, i.e. Big Data, can be 
processed more efficiently than before. The advent of cloud 
computing and HPC has led to several advances in EO data 
processing. Some of the main enabling infrastructures are 
described below – the Earth Observations Data Cubes 
(e.g. the Open Data Cube promoted by CEOS or the Euro 
Data Cube supported by ESA), the European Commission’s 
Data and Information Access Services (DIAS) and the 
ESA Thematic Exploitation Platforms (TEPs). In addition, 
Trends.Earth, a customised platform for SDG monitoring 
reporting with EO data, is briefly presented.

Data cubes organise satellite imagery into stacks of 
consistent, calibrated, geographic ‘tiles’, underpinned by a 
relational database ready for rapid manipulation in a high 
powered, computing environment. Data cubes can serve the 
EO data and information needs (in terms of data discovery, 
access, processing and analysis) of the large community 
of SDG stakeholders, addressing both global and national 
data processing needs. Some of the most widespread data 
cubes for processing and analysing large spatiotemporal 
geospatial datasets are listed here: 

• �CEOS Data Cube [URL-8] 

• �Earth System Data Cube (ESDC) [URL-9]

• �Digital Earth Australia Open Data Cube (ODC) [URL-10]

• Euro Data Cube [URL-11]

• Google Earth Engine [URL-12]

• Open Data Cube [URL-13]

https://doi.org/10.1016/j.isprsjprs.2014.03.009
https://www.opendatacube.org/ceos
http://earthsystemdatacube.net
http://www.ga.gov.au/dea/odc
https://eurodatacube.com
https://earthengine.google.com
https://www.opendatacube.org
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The European Copernicus Programme has deployed five 
cloud-based platforms known as the DIAS which are 
funded by the European Commission [URL-14]. The DIAS 
facilitate access to Copernicus data and services, including 
the Sentinel data, as well as to on-line EO data processing 
and analytic tools. The Amazon Web Services (AWS) are 
also providing access to Sentinel-2 imagery, through the 
Sentinel Hub [URL-15], thereby significantly reducing the 
user burden of downloading, archiving and processing 
petabytes of data.

The Thematic Exploitation Platforms (TEPs) were created 
by ESA to help users access an interconnected, virtual work 
environment, providing access to EO data and the tools, 
processors, and processing infrastructure required to work 
with them, through one coherent interface. Instead of the 
user downloading and working locally on EO and non-EO 
data, the TEP allows the user to access these data on the 
cloud. Currently there are TEPs addressing the following 
applications:

• Coastal [URL-16]

• Forestry [URL-17]

• Hydrology [URL-18]

• Geohazards [URL-19]

• Polar [URL-20]

• Urban [URL-21]

• Food security [URL-22]

Trends.Earth [URL-23], an EO-based tool, developed by 
Conservation International in corporation with NASA and 
Lund University, under funding of the Global Environment 
Facility, is a customised platform for SDG monitoring 
reporting with EO data, currently equipped with tools for 
reporting on SDG 15.3.1 on land degradation. It integrates 
national level data with globally available EO datasets to 
calculate the proportion of degraded land. It is based on 
standardised methods that have been compiled in a Good 
Practice Guidance by the UNCCD and partners including 
CSIRO [RD-8], while also providing the flexibility for 
customisation to local conditions. The tool uses data from 
three sub-indicators –land cover, vegetation productivity 
and soil organic carbon - to estimate the degraded land 
area and is able to produce spatially explicit outputs as 
well as tabular results.

Challenges and limitations of Earth 
Observation

It is all too easy to view EO data and processing tools as 
solutions with endless possibility, that will solve many 
of the SDG data challenges but there are limitations to 
EO data and the human and technical capacity to process 
them. Here the main technical and capacity limitations 
are discussed in relation to optical and radar-based 
methods of data acquisition.

Optical satellites, i.e. those that passively record reflected 
solar radiation from the Earth’s surface, are affected by 
cloud coverage as reflected light cannot pass through 
cloud. Equally they cannot operate at night. Therefore, 
optimal viewing conditions for optical satellite are cloud-
free days – infrequent in moist and humid climates such as 
those in the Tropics. The availability of dense time series, 
combined with the capacity for pixel-based processing, 
due to high geometrical accuracies (within pixel), allows 
extraction of useful information, especially in cloudy regions 
such as in the tropics. Optical satellites are also subject 
to trade-offs between spatial and temporal resolution, 
between revisit time and geographical coverage. This 
necessitates, for example, that optical satellites which 
achieve very high resolutions, e.g. <1m, cover less area 
and acquire imagery of smaller dimension than a medium 
resolution satellite which could image larger areas in one 
pass. The emergence of satellite constellations (including 
constellation of micro satellites) allows high revisiting 
even at high spatial resolutions. Trade-off also applies 
to revisit time as satellites that acquire imagery in lower 
detail can generally revisit the same point on the Earth’s 
surface more regularly, even once or twice per day for some 
satellite systems.  

Satellites carrying radar, i.e. those that actively emit a high 
frequency signal, can operate at night and through cloud 
cover as they are not dependent on sunlight as a source 
of illumination to image the Earth’s surface. The ability to 
image the same area repeatedly regardless of cloud cover 
or time of day gives radar a significant advantage over 
optical imagery. The limitation in this is that, being an active 
instrument with power limitations, radar cannot remotely 
sense the whole surface of the globe as done by the optical 
instruments. All radar systems have a duty cycle (a fraction of 
the time when the radar is transmitting). Although radar is a 
powerful tool for remote sensing in tropical and ice-covered 
regions, it is also subject to the same trade-offs in temporal 
and spatial resolution as described above. In addition it has 
the unique and undesirable property of producing speckle in 
imagery which results from the nature of the radar signal 
interacting with surface objects, and is therefore not as 
intuitive as optical imagery. Earth surfaces do not appear 
as the human eye might see them. Radar imagery needs 
extra pre-processing and expert interpretation to be used 
effectively. Some big progresses have also been made by 
radar. For example the Sentinel 1 mission allows imaging of 
the whole land surface of the globe every 12 days, and every 
observation is a ‘good’ observation, since it is not affected 
by clouds and by sun illumination.

In addition to the technical characteristics of EO data 
acquisition, there are limitations associated with integration 
of EO into national statistics. The challenge of synthesising 
multiple data sources will be a key one for custodians and 
NSOs alike as will the design of methodologies which can 
harmonise EO with statistical data according to the rigorous 
standards demanded by official national statistics. As EO 

http://trends.earth
https://www.unccd.int/sites/default/files/relevant-links/2017-10/Good%20Practice%20Guidance_SDG%20Indicator%2015.3.1_Version%201.0.pdf
https://www.sentinel-hub.com
https://urban-tep.eu
https://geohazards-tep.eu
https://www.coastal-tep.eu
https://f-tep.com
https://hydrology-tep.eu
https://portal.polartep.io
https://foodsecurity-tep.net
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data is a highly specialised field, the technical capacity 
and financial resources to stock, process and manipulate 
EO data can be an issue for countries. Space agencies, 
with specialists in these realms, are increasingly launching 
initiatives to make EO data less complex and accessible 
for users. At an international level these efforts are being 
coordinated by the Committee on Earth Observation 
Satellites (CEOS) which includes promotion of Analysis 
Ready Data (ARD) standards and exploration of open data 
platforms such as the Open Data Cube. 

Other limitations include the difficulties for some countries 
to access and process the large amount of EO data 
available on their countries and the need to have some 
large computing infrastructures to process and analyse 
the data. Cloud-based solutions can be used to overcome 
this problem, as these allow remote access to the data 
and the processing capacities. However due to sovereignty 
reasons some governments are reluctant to use cloud-
based platform and lose control of their national data, and 
hence prefer using their local computing platforms which 
are confronted to big data challenges. Another obstacle is 
the lack of technical expertise in some countries, hence 
the need for capacity building. Many EO Massive Open 
Online courses (MOOCs) have been developed to build 
these capacities, and some organisations (CEOS or national 
scientific organisations) are also dedicated to provide 
technical training and technology transfer to help countries 
use EO data and run these platforms.

GEO initiatives related to the SDGs

There is more open access to EO data and cloud computing 
power than ever before, such that EO products and the 
computational tools to process them, can now readily help 
countries to monitor change in many land, freshwater 
and ocean surface processes. However, with a plethora 
of satellite sensors and downstream products, it is 
challenging for users to identify those which meet their 
reporting needs. The Group on Earth Observations (GEO) 
is a key player to ensure that such observations are easily 
accessible and fit for purpose.  

The Group on Earth Observations (GEO) is an 
intergovernmental partnership that aims to improve the 
availability, access and use of Earth observations for a 
sustainable planet. GEO promotes open, coordinated 
and sustained data sharing and infrastructure for better 
research, policy making, decisions and action across many 
disciplines. Formed in 2004 at the third Earth Observation 
Summit by a resolution from almost 60 countries, GEO 
now consists of 105 governments, 126 Participating 
Organizations, and vast EO resources in the Global Earth 
Observation System of Systems (GEOSS) Platform. GEOSS 
is a central part of GEO’s Mission, consisting of coordinated, 
independent EO data, information and processing systems 
that serve free data to a myriad of public and private sector 
users, underpinned by open data sharing policies and 

practices. In addition to building observation systems, GEO 
supports policy making through its strategic engagements 
with the 2030 Agenda on Sustainable Development, the 
Paris Agreement for Climate, and the Sendai Framework 
for Disaster Risk Reduction. Very recently, the NextGEOSS 
Platform has recently been published to address more 
specifically the SDG process [URL-24]. GEO plays an 
instrumental role in promoting and showcasing the value 
of EO in support of the SDGs and launched the EO4SDG 
initiative in 2016 [URL-25]. The GEO EO4SDG initiative 
is run in close partnership with the UN agencies and the 
NSOs and has four primary lines of actions: (i) national 
pilot projects integrating EO with national statistical data; 
(ii) capacity building around the methodologies needed 
to apply EO data; (iii) identification and development of 
data and information products to advance understanding 
and access to suitable EO resources and (iv) outreach and 
engagement. 

In addition to the GEO EO4SDG initiative, a number of GEO 
flagships, initiatives, foundational tasks and community 
activities are designed to bring scientific observations 
to users who need them in different sectors such as 
biodiversity, forestry, agriculture or urban. A number of 
GEO activities and how they support the SDG indicator 
framework are briefly introduced below:

GEO Biodiversity Observation Network (GEO BON) 
[URL-26] is aimed at users in the biodiversity community. 
GEO BON initiates and coordinates efforts to design and 
implement interoperable national and regional biodiversity 
monitoring networks and is spearheading the emerging 
Essential Biodiversity Variables – a set of variables required 
to report on and monitor biodiversity change. These 
observation networks support indicators that concern life 
on land (15.1.1, 15.1.2), in freshwater (6.6.1) and oceans 
(14.4.1). 

AquaWatch [URL-27], the GEO Water Quality Initiative, 
aims to develop and build the global capacity and utility 
of Earth Observation-derived water quality data, products 
and information to support water resources management 
and decision making. AquaWatch is aiming to produce a 
global monitoring system for water quality by 2025 called 
the Water Quality Information Service which will be a 
direct contribution to indicator 6.3.2 (water quality), 6.1.1 
and 6.1.12 (sanitation). 

GEO Global Agricultural Monitoring (GEOGLAM)  
[URL-28] is an initiative that supports the Agricultural 
Market Information System (AMIS) and provides monthly 
crop monitoring and early price warnings, food supply 
stress (2.4.1,2c.1) and sustainable use of resources such as 
water (6.4.2, 6.5.1). In addition the GEOGLAM initiative has 
supported the development of the world’s first Rangelands 
and Pasture Productivity (RAPP) Map [URL-29]. The RAPP 
Map is the spatial data platform for GEOGLAM’s RAPP 
activities. 

https://nextgeoss.eu
http://eo4sdg.org
https://www.geoaquawatch.org
http://geoglam.org
https://www.geo-rapp.org
https://geobon.org
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GEO Blue Planet [URL-30] plays a coordinating role in ocean 
and coastal observations. It is an umbrella initiative for many 
other programmes responsible for gathering observations in 
ocean and coastal waters. It improves engagement with 
users across a variety of disciplines to improve the quality 
of services delivered to them and to ensure inter-operability 
of marine observational data. Through its activities, the Blue 
Planet initiative raises awareness of the societal benefits 
of ocean observation for both the public and policy sectors. 
The activities of Blue Planet are of particular relevance to 
the SDG indicators on coastal marine pollution (14.1.1) and 
ocean acidification (14.3.1).

Global Forest Observation Initiative (GFOI) [URL-31] 
was a concept that arose from the Forest Carbon Tracking 
Project undertaken as part of the 2009-2011 GEO Work 
Plan whose start-up phase commenced in 2012. The GFOI 
is primarily tasked with ensuring a sustained supply of 
observations for national forest monitoring systems and 
assisting countries in making best use of them. In addition, 
it helps countries in starting up national forest observation 
systems according to GEO principles of openness and 
common standards. The GFOI interfaces with the major 
international forest assessments and assist countries to 
report to the Global Forest Resource Assessments of the 
Food and Agricultural Organisation (FAO) and the national 
Green House Gas (GHG) inventories reported to the UNFCCC 
using IPCC methods. For the SDGs, the GFOI is mainly 
concerned with indicator 15.1.1 (Forest areas).

The GEO-Wetlands [URL-32] initiative aims to realise 
the possibility of a Global Wetlands Observation System 
(GWOS) on behalf of the Ramsar Convention. Being a GEO 
Initiative it follows the same basic principles of openness 
and data sharing. This will be achieved through a wetland 
community geo-portal. GEO-Wetlands is already building a 
community of wetland observation practitioners, spanning a 
range of actors and has pilot projects, e.g. Global Mangrove 
Watch, with a view to building the GWOS. GEO Wetlands 
will play a major role in coordinating data collection for 
indicator 6.6.1(water-related ecosystems). 

The GEO Human Planet [URL-33] initiative is focused on 
developing a global baseline map of human settlement and 
population density, as well as testing methods for regular 
updates of the baseline for post-2015 indicators such as 
those of the SDGs, the UNFCCC and the Sendai Framework. 
The core partnership consists of several universities and 
agencies with expertise in human settlement mapping. EO 
plays a key role in the Human Planet mapping approach, 
both for baseline studies and mapped updates, as it 
captures the physical infrastructures of human settlements. 
For SDGs, the Human Planet initiative is a key partnership 
for indicator 11.3.1 (land consumption).

The GEO Global Network for Observation and 
Information in Mountain Environments (GEO-GNOME) 
[URL-34] initiative addresses the paucity of observations 

and information on mountains. It specifically aims to halt 
and manage the drivers of change in mountain ecosystems 
that result in negative consequences for the health of 
these ecosystems such as land use and climate change by 
bring the best available data for decision making impacting 
mountain communities. Some of its data-oriented tasks 
involve more precise delineation of mountain ecosystems 
and harnessing the best available spatial data to 
characterise mountain ecosystems, including EO-derived 
land cover change data. Therefore, it is of particular 
relevance for 15.4.1 (mountain green cover) and 15.4.2 
(mountain biodiversity).

The  GEO Land Degradation Neutrality (GEO LDN) Initiative 
[URL-35]  was launched in 2018 to enhance national 
capacities to map and measure the extent of degraded 
lands and report on SDG Indicator 15.3.1 (“proportion of 
land that is degraded over total land area”) and ultimately 
to achieve Land Degradation Neutrality (LDN; SDG Target 
15.3) under the auspices of the UNCCD. GEO is well-placed 
to assist the UNCCD (the custodian agency for Target 15.3 
and Indicator 15.3.1) and its contracting parties with the 
rapid provision and deployment of EO datasets, in-country 
capacity building and training, along with guidance on the 
use and development of EO tools and platforms.

Previous assessments of EO contribution to 
the SDGs

Recognising the fundamental role for satellite EO in the 
realisation of the Global Indicator Framework, CEOS has 
identified the SDGs as a top priority and established in 
October 2016 the CEOS Ad-Hoc Team on SDGs (AHT SDG) 
[URL-36] dedicated to better coordination of the world’s 
space agencies in support of the provision of satellite data 
for the 2030 Agenda. The AHT SDG team aligns with the 
SDG agenda through GEO, UN agencies and at national level 
through NSOs and ministries. The team is also dedicated to 
fulfil its unique role in providing information about satellite 
data to the SDG community, and informing space agencies 
about specific data requirements to help measure some 
indicators. 

There have been many studies and reports made available 
on the contribution of EO to the SDG indicator framework 
and to the Agenda 2030 more broadly. Here, three of the 
most relevant assessments are briefly described – that of 
the IAEG-SDGs WGGI; GEO with the support of Japanese 
Space Agency (JAXA); CEOS with the support of the 
European Space Agency (ESA).  

In 2016-2017, the IAEG-SDGs WGGI convened two 
meetings, one in Mexico City [RD-9] and one in Kunming, 
China [RD-10], and identified a short-list of 24 SDG 
indicators which could benefit from geospatial data, 
categorized into two types (direct contribution or indirect 
but significant support). They suggested that there are 
15 indicators where geospatial information together, with 

https://geoblueplanet.org
http://www.fao.org/gfoi
https://geowetlands.org
https://mountainresearchinitiative.org/activities/projects/geo-mountains
https://www.earthobservations.org/documents/gwp20_22/GEO-LDN.pdf
http://www.ceos.org/sdg
http://ggim.un.org/meetings/2016-1st_Mtg_IAEG-SDG-Mexico
http://ggim.un.org/meetings/2017-3rd_Mtg_IAEG-SDG-China
https://www.earthobservations.org/documents/gwp20_22/HUMAN-PLANET.pdf
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statistical data, can contribute directly to the production 
of indicators and 9 indicators where geospatial data can 
significantly support the production of indicators. 

In 2017, GEO, in collaboration with JAXA and CEOS, 
produced a booklet entitled “Earth Observations in support 
of the 2030 Agenda for Sustainable Development” on the 
potential role that EO data can play in relation to the 17 
SDGs [RD-11]. This booklet mainly featured case studies 
showcasing EO for specific indicators as well as a very 
brief assessment of SDG Targets and Indicators that can 
be supported by EO. Their conclusion was that almost a 
half (71) of the targets could be supported and about one 
eighth (29) of the indicators.

In 2018 CEOS, supported by ESA, produced a handbook on 
“Satellite Earth Observations in Support of the Sustainable 
Development Goals” [RD-12]. CEOS analysed which targets 
and indicators could be supported by EO, the distribution of 
the custodian agencies for the indicators supported by EO 
and the tier status of the indicators supported by EO, while 
raising awareness of the importance of EO for achieving the 
SDG goals and targets. This highlighted the opportunities 
and challenges to mainstream EO in the SDG processes, and 
provided different perspectives from various stakeholders 
regarding the integration of EO in the SDG framework, while 
showcasing the value of earth observation with practical 
examples. The analysis done by GEO on the relevance of 
EO for the SDG targets and indicators was re-used and 
built-upon –an independent analysis was not carried out. 
A number of statistics were added on the custodians and 
tier levels. The analysis concluded that 73 targets and 
29 indicators in total could be supported by EO (45 % 
of tier 1 indicators and 24% of tier 2) and that the FAO 
was the custodian whose indicators could most benefit 
from EO, followed by UNEP and UN-Habitat. The report 
demonstrated the importance of EO for goals 6, 11, 14 and 
15 in particular as their respective targets and indicators 
require information on land cover, land productivity, above 
ground biomass, water extent or quality characteristics, as 
well as air quality and pollution.  

Key EO datasets for the SDG Global Indicator 
Framework 

Custodian agencies have the mandate to mobilize resources, 
including data, in support of national efforts to monitor 
and report on the SDG indicators. The data mobilization 
includes the provision of global or regional datasets that 
can complement national data when not adequately 
available.

This compendium only addresses key, critical and freely 
accessible EO datasets at the time of writing and, as this 
is a rapidly evolving environment, precludes an exhaustive 
review of all possible global EO datasets of potential use 
for SDG reporting. 

It is impossible to do an exhaustive review of all potential 
global EO-based tools (i.e. tools that allow access to global 
datasets) that could assist NSOs and indicator custodians 
with delivering and implementing EO-based methodologies. 
Below are a sample of key global products that cover 
major thematic areas of the biosphere and society such 
as land cover, vegetation productivity, forests, wetlands, 
surface water, human settlements and which can support 
the methodological development and measurement of a 
number of SDG indicators. 

Global Forest Watch (GFW) [URL-37] is a platform, 
delivered by the World Resources Institute (WRI), which 
houses geospatial datasets related to forest cover, condition 
and use. It is the key visualisation tool for the Global Forest 
Change product produced by the University of Maryland in 
collaboration with Google Earth Engine. The Global Forest 
Change product depicts a global tree cover baseline for the 
year 2000 and shows losses of tree cover on an annual 
basis up to 2017. Gains in tree cover are also visible but 
not resolved to annual time steps.  This platform serves 
datasets of key importance for reporting on indicator 15.1.1 
(forest area).	

Global Mangrove Watch (GMW) [URL-38], developed 
under the JAXA’s Kyoto & Carbon initiative, provides 
geospatial information about mangrove extent and changes 
to the Ramsar Convention, national wetland practitioners, 
decision makers and NGOs. The global mangrove extent 
baseline map for the year 2010 is displayed on WRI’s 
Global Forest Watch portal. Data are available for baseline 
changes from 1996 and 1997 (JERS-1), 2007 to 20010 
(ALOS) and from 2015 (ALOS-2).This provides invaluable 
data for indicators 6.6.1, and 15.1.1., 15.1.2 as well as 
indicators under target 13.1 on disaster risk reduction, 
recognizing that mangroves have a key role to play in 
mitigating climate–related hazards such as sea level rise.

The Global Urban Footprint (GUF) [URL-39] / World 
Settlement Footprint (WSF) [URL-21], produced by the 
DLR’s Earth Observation Centre, provides global mapping of 
built-up areas, as man-made built structures with a vertical 
component. The GUF 2012 provides a global map of built 
areas for the reference year 2012, based on TerraSAR-X 
and TanDEM-X imagery, from the Airbus Defense and Space 
company. It is currently available to the scientific research 
community, at ~12 m spatial resolution near the equator, 
with increasing spatial resolution towards the poles. A 
75m resolution data is also available for public use. The 
WSF 2015 is a new, globally consistent map of the world’s 
human settlements at an unprecedented spatial resolution 
of 10 metres, generated from the joint processing of 
optical and radar imagery. WSF 2015 has been derived 
from Landsat 8 and Sentinel 1. A WSF evolution which 
will allow to map the urban development patterns over 
the last 30 years, based on the whole Landsat archive, is 
under preparation in cooperation with Google Earth Engine. 
The WSF 2019, to be released by the end of 2020, will be 

https://urban-tep.eu
https://www.earthobservations.org/documents/publications/201703_geo_eo_for_2030_agenda.pdf
http://eohandbook.com/sdg/files/CEOS_EOHB_2018_SDG.pdf
https://www.globalforestwatch.org
https://www.globalmangrovewatch.org
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-40454
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the first global dataset of human settlements based on 
Sentinel 1 and 2. Both GUF and WSF datasets are available 
through the ESA’s Urban Thematic Exploitation Platform 
(U-TEP). These global data sets are important for reporting 
on indicator 11.3.1.

The Global Human Settlement Layer (GHSL) [URL-40], 
produced by the European Commission’s Joint Research 
Centre (JRC), provides global coverage of the human 
settlement at 30m spatial resolution for four time steps 
from 1975 through to the year 2015. It consists of spatial 
datasets of built-up areas, population density and human 
settlement. The degree of area built-up is measured as 
the proportion of building footprint area within the total 
area of the pixel. Although built-up area is expressed at 
30m resolution, when combined with census data, the 
population metric layers are produced at 1km resolution. 

The Global Surface Water Explorer [URL-41] / Surface 
Water Viewer [URL-42], produced by the European 
Commission’s Joint Research Centre (JRC) and UN 
Environment respectively, provide global coverage of the 
world’s surface water resources including their temporal 
dynamics over the last 32 years. The 30m resolution water 
products within these tools are based on the Landsat 
archive from 1984 to 2015 and could have a wide range 
of uses in the SDG framework, supporting applications 
including water resource management, climate modelling, 
biodiversity conservation and food security. Indicator 6.6.1, 
in particular, could benefit from the information contained 
in the Global Surface Water Explorer within the Explorer 
and the UN’s Surface Water viewer. 

The ESA Climate Change Initiative (CCI) Land Cover  
[URL-43] is a project that has produced long-term, 
consistent, global land cover time series from 300m spatial 
resolution satellite imagery based on the UN Land Cover 
Classification System (LCCS). The CCI project has also 
delivered a free user tool to allow users to customise the 
land cover product for the purpose of climate modelling. 
The ESA CCI land cover products are potentially key inputs 
to the indicator 15.3.1.

The Global Soil Organic Carbon map (GSOCMap)  
[URL-44], utilises remote sensing imagery as prediction 
factors for global soil organic carbon mapping as traditional 
soil mapping involves a sampling based approach. This 
process of integrating remote sensing imagery in digital 
soil mapping of the world also paves the way for soil 
organic carbon (SOC) maps. The Global Soil Partnership 
(GSP), of the FAO, and its Intergovernmental Technical 
Panel on Soils (ITPS) has launched the GSOCMap, in 
support of the Sustainable Development Goal Indicator 
15.3.1. The map, compiled from national SOC maps, 
can be used to assess soil condition, identify degraded 
areas, set restoration targets, explore SOC sequestration 
potentials and support the greenhouse gas emission 
reporting required by the UNFCCC. 

The International Soil Reference and Information 
Centre (ISRIC) [URL-45] has produced a global maps of 
soil property and class called SoilGrids at 1 km / 250 m 
spatial resolutions. 

The Global RAPP (Rangelands and Pasture Productivity) 
Map [URL-29] is an online geospatial tool that provides 
EO-derived information about the state and condition 
of global rangelands. It gives time-series data on the 
vegetation and environmental conditions, allowing national 
and regional tracking of the resources which sustains 
livestock production. It has been developed in Australia, 
and is currently hosted by Data61 with the assistance of 
IT resources and services from the National Computational 
Infrastructure (NCI), and the AusCover facility. RAPP Map 
is managed and supported by the Commonwealth Scientific 
and Industrial Research Organisation (CSIRO) and through 
funding from the Australian Government’s National 
Landcare Programme.

In summary, there are global EO-derived data sets which are 
of direct relevance for some of the SDG indicators, yet there 
are some caveats to their use. In terms of computational 
resources, the global datasets can only be produced through 
automatic processing using enabling digital infrastructure 
such as cloud computing which necessitate high internet 
bandwidth, access costs, computing infrastructure and 
expertise. In terms of accuracy, the global accuracy reported 
by the dataset producer might not be reached at country 
level, simply because of the need to favour global coverage 
at the expense of local precision. Therefore most of these 
datasets should be validated at the country level in order 
to estimate their accuracy for national scale uses, and this 
is why GEO global initiatives like GEOGLAM have a network 
of in-country validation sites. With these caveats in mind, 
global EO datasets, produced by major global collaborative 
initiatives, under the auspices of GEO, are an important 
source of information to complement national data and 
may represent the only data source for data poor countries.

https://ghsl.jrc.ec.europa.eu
https://www.sdg661.app
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-soil-organic-carbon-map-gsocmap
https://www.isric.org/explore/soilgrids
https://www.geo-rapp.org
https://global-surface-water.appspot.com
https://climate.esa.int/en/projects/land-cover
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Methodology for analysis of EO for 
the SDGs

The analysis of EO potential was undertaken based on 
the tier status and methodologies as of in February 2019. 
The presentation of results in this Compendium has been 
subsequently updated to reflect changes arising from 
the 2020 comprehensive review of the Global Indicator 
Framework. Due to broad scope of all 232 indicators3  , 
it was necessary to first conduct a broad screening of all 
indicators and select the subset of indicators that would 
be analysed in depth and presented in this compendium. 
This initial screening exercise was necessary to identify only 
those indicators where EO could reasonably contribute to the 
development or implementation of their methodology. In 
order to do this systematically, a ”traffic light” system of red, 
amber, green colours was applied across the full indicator 
suite to flag EO relevance, where:

Green: SDG Indicators for which Earth Observations 
have or have not been currently identified as a source of 
information but would make a definite contribution to their 
methodological development with relative ease

Amber: SDG Indicators for which Earth Observations has 
not been currently identified as a source of information 
but where there is potential to do so with further 
methodological development

Red: Earth Observation currently has no contribution to the 
methodology, i.e. all other SDG Indicators 

The amber and green indicators resulted from a two –phase 
analysis: (i) an initial screening exercise based on an internal 
review of the full indicator suite with respect to EO potential 
and (ii) an in-depth analysis, according to the readiness and 

3 After the 2020 comprehensive review of the Global Indicator 
Framework, the number of indicators has been reduced from 232 
to 231 indicators.

adequacy criteria, as described and presented in a series 
of “factsheets”, one per indicator. This in-depth analysis 
followed a similar logic of a traffic colour system but this 
time applied across eight criteria per indicator which led 
to an overall rating of EO relevance for the indicator. The 
overall colour rating was deduced from a review of all the 
colours across the eight criteria and an informed judgement 
on the use of EO for the indicator. A brief justification is 
given to support the final colour assessment. The eight 
criteria are listed below (table 2), covering the readiness of 
EO for the indicator (1-4) and the adequacy for the indicator 
methodology (5-8). The criteria for their colour rating are 
explained at the end of each factsheet for reference purposes.

Readiness criteria: 
1. �Maturity of EO technologies: How tried and tested are the 

EO technologies and are they globally applicable?

2. �Status of EO in indicator guidelines: Is EO explicitly 
mentioned in the indicator methodology?

3. �Technical capacity required: What is the level of expertise 
required to use EO at the country level?

4. �Availability of global EO data: Are global or regional 
datasets publicly available and free to use?

Adequacy criteria:
5. �Compliance with reporting calendar: Does the EO 

methodology align with the proposed reporting calendar?

6. �Sensitivity to change: Are the EO data sensitive to change 
in the parameter of interest?

7. �Scalability (spatial): Are the EO data geographically 
scalable or can they only be retrieved at limited scale?

8. �Substitutability of gaps: Is EO the only source of 
information for the methodology or are there alternative 
data sources which could fill gaps in the EO data record?

4 Baseline year and reporting interval as mentioned in metadata

Table 2: Explanation of criteria used to assign the RAG colours for each of the criterion used to assess overall contribution of EO to the indicator

Readiness Adequacy Supporting 
Comments

Criteria

Maturity of EO 
technologies

Status  
of EO in 
indicator 
guidelines

Technical 
capacity 
required

Availability of  
global EO data

Compliance 
with 
reporting 
calendar4 

Sensitivity to 
change

Is it 
scaleable 
(spatial)?

Is there a 
substitute for 
gaps in the 
EO record?

Tried and 
tested and  
globally 
applicable

Frequently 
mentioned

Little capacity 
– easy to use 
and implement 
in country

Widely available and 
in public domain 

Yes Dynamic 
variables

Good Yes, stable 
approaches 
found

Demonstrated 
on a limited 
scale

Suggested 
as part of 
other spatial 
approaches

Medium level 
of expertise 
needed, not all 
countries will 
implement 

Publicly available 
but only for limited 
regions

Partly Static variables-
-that may be 
relevant but not 
useful for change 
monitoring 

Patchy Some but not 
consistent

Experimental Not 
mentioned 
or implied

High level 
of expertise, 
demanding 

Not publicly available 
anywhere but maybe 
on request 

No Insensitive 
to change in 
parameter of 
interest

Poor or 
limited

EO is the only 
support for the 
methodology
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Once the final colour rating was assigned and justified by 
an explanatory sentence in the comments column (either 
amber or green, as red indicators would already have been 
eliminated by the screening exercise), the factsheets were 
populated with more detailed information gleaned from the 
peer-reviewed and grey literature, while supplemented by 
examples taken from expert contributions. The factsheet 
itself is carefully structured, mirroring the sub-sections 
of the metadata guidelines produced by the indicator 
custodians, for ease of interpretation and transferability 
to indicator methodologies on the SDG indicator Metadata 
repository [URL-27]. The factsheets were finally reviewed 
by the same experts for consistency and content. 

It is accepted that the colours assigned and information 
collated could be subject to debate and further dialogue 
throughout the SDG and EO community. Therefore, future 
versions of this compendium are envisioned as the maturity 
of EO technologies develops and the demands of the SDG 
indicator framework continue to evolve while taking on 
board expert opinion in future iterations of the analysis. 

Structure of Factsheets

The core body of this document is the compendium of EO 
contribution to the SDG targets and indicators, consisting 
of 29 factsheets, one per target, covering 34 indicators 
where EO has a potential or definite contribution to the 
indicator methodology. When a target has more than one 
indicator, each indicator is addressed separately in a unique 
factsheet. 

These factsheets are intended to be stand-alone so 
that they can be used a resource material for NSOs, line 
ministries, etc. The factsheets are structured consistently 
and are composed of following three main sections and in 
some cases sub-sections:

How can EO be used to help countries achieve the 
target?

This is intended to be a broad assessment of how EO 
can help countries achieve the target, in isolation from 
the indicators. This section draws out the contribution 
of EO to (i) setting national targets as part of their 
voluntary commitments to Agenda 2030 and (ii) planning/
implementation of the targets. This latter part also 
involves proposing new EO-based indicators that could be 
useful for countries. 

The potential of EO to support the SDG indicators

The next section, in the form of a table, is indicator specific. 
It contains a transparent and objective assessment of how 
EO can support the indicators of the target, as described 
above in the methodology section. Non-EO based indicators 
are listed in the table for reference only. For a supporting 
guide to NSOs on using EO to support official statistics, see 

the Satellite Imagery and Geospatial Data Task Team report 
of the United Nations Task Team on Satellite Imagery and 
Geospatial Data [RD-13].

Short methodological guidelines illustrated with EO 
best practice examples

This section summarises (i) where EO can contribute to the 
methodology as currently written by the indicator custodian 
and (ii) also proposes changes to the methodology for 
better EO uptake (as explained below under computation 
method). As green indicators were considered to be 
more open to the possibility of EO integration into their 
methodologies, this section is elaborated in more detail 
than for amber indicators.

The section is filled out for tier 1 and tier 2 indicators 
only, following a logical order, mirroring the sub-sections 
of the Methodology in the metadata guideline structure 
provided by the UN Department of Economic and Social 
Affairs. Tier 3 indicators (as they were at the start of the 
analysis), in the absence of a published methodology, were 
not analysed at this level of detail.
   
Computation method
This sub-section reviews the computation method on how 
the indicator is to be computed and either (i) provides a 
summary of the EO methods proposed by the custodian, (ii) 
proposes a methodology where EO is not mentioned but 
has a potential or definite contribution or (iii) proposes a 
methodology for a better use of EO than what is indicated 
in the metadata file.  

Disaggregation
This sub-section describes opportunities for spatial 
disaggregation of the indicators using EO data, and/or 
thematic disaggregation where non-EO data are available 
for this purpose.

Treatment of missing values
This sub-section summarises the possibility of missing 
values in the availability of EO source data and proposes 
substitutes for the EO data record. 

Regional aggregates
This sub-section suggests how the EO-based method 
can mitigate the problem of regional aggregations when 
countries use different definitions or different methods.   

Sources of discrepancies
This sub-section documents discrepancies in indicator 
values related to accuracies of EO methods. Discrepancies 
arising from the integration of EO with non-EO data are 
also discussed where applicable. 

Limitations
This sub-section briefly lists some restrictions and 
constraints on the use of an EO-based approach in the 
indicator computation.  

https://unstats.un.org/bigdata/task-teams/earth-observation
https://www.geoaquawatch.org
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Data sources
This sub-section covers the main datasets, tools, platforms 
and services related to the EO method described. It covers 
the following main resources:

- �Source satellite data: EO legacy data and present data 
(with long term perspectives, distinguishing between 
free and commercial)

- �Global/regional datasets: Derived EO datasets, some of 
which have been described above

- �Software, tools and platforms: Free of charge software 
toolboxes, which can be used to implement, in part or 
in full, the EO methods (e.g. software tools to handle 
EO data cubes). On-line computing infrastructures which 
facilitate the production and/or access to EO datasets for 
public and private users

- �Operational or commercial services: Existing service 
centres where the EO data (global, downstream 
datasets) are delivered on an operational basis, either 
freely or with a service fee. These are merely examples 
of service providers but there are many more private and 
public service providers of EO data tools and products 
which could be of use for SDG reporting than could be 
listed here.

Reference List
This sub-section lists a few critical, selected references 
for further reading on the topic.  

Key messages for countries
This sub-section is intended as a brief summary, in the 
form of short bullet points, of the analysis with some take 
home messages for countries on how EO can assist them 
in indicator reporting.

EO best practices and national experiences

This section describes EO best practices and national 
experiences for specific indicators, collated, where 
possible and available, from EO experts and national 
focal points through solicited requests. This section is 
intended to bring the theory and concepts explained to 
life and make the EO methodologies proposed relevant 
for countries. We document examples only for those 
indicators where we could find appropriate examples, this 

does not preclude that EO is being actively used to support 
indicator reporting and methodological development in 
other countries which are not documented here.

Definition of terms

Terms used throughout this compendium have been 
standardised for ease of interpretation. Term definitions 
are described below.

Spatial Resolution

Refers to the size of the area covered by a pixel in a 
satellite image. In optical and thermal remote sensing, 
each pixel in an image corresponds to a patch on the 
Earth’s surface. It is also known as ‘ground resolution’ 
and is usually expressed in meters.

For the purpose of this analysis, the following categories 
of spatial resolution are considered:

• Very High Resolution ≤ 5m

• High Resolution ≤ 30m

• Medium Resolution: ≤100m

• Low Resolution >100m

Spectral resolution

Refers to the wavelength intervals in which a satellite 
sensor receives electromagnetic radiation. It describes 
the ability of a sensor to define narrow wavelength 
intervals. The finer the spectral resolution, the narrower 
the wavelength range for a particular channel or band. 
The following categories are generally used describing 
the requirement for spectral resolution:

• Panchromatic – 1 band (i.e. black and white image)

• Multispectral – 4 to ±15 bands

• Hyperspectral – hundreds of bands

Temporal frequency (resolution)

This is the required interval between two successive 
instances of a satellite observation in the same area 
and often expressed on an hourly, daily, weekly, monthly, 
yearly basis.
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Target: 1.1

By 2030, eradicate extreme poverty for all people 
everywhere, currently measured as people living on less 
than $1.25 a day

Target: 1.2

By 2030, reduce at least by half the proportion of men, 
women and children of all ages living in poverty in all its 
dimensions according to national definitions

How can EO be used to help countries achieve the 
targets?

Targets 1.1 and 1.2 have been pooled together in this 
factsheet, due to their similarities. 

Earth Observation (EO) data can be used to track and target 
poverty, and aid the allocation of scarce resources which 
can help improve human livelihoods. EO can be used to 
map spatial distribution of socioeconomic deprivations, as 
well as providing information that may indicate areas at risk 
of poverty (e.g. contribute towards famine early warning 
systems) (NASA, 2018). EO data can be used to forecast 
weather, monitor fires, determine populations at risk from 
flooding/landslides, analyse climate change and map land 
cover change (e.g. deforestation and degradation). These 
factors can all help identify areas currently at risk from 
poverty, and in the future.  

Satellite images can also be used to estimate economic 
activity (e.g. through monitoring night lights) and mapping 
houses (e.g. slums), which can be identified through 
satellite images using physical parameters, clustering 
of structures with or without a road network, irregular 
and haphazardly grouped temporary, poorly-constructed 
or semi-permanent households (Montana et al., 2016). 
Further, these datasets can be combined with in-field 
survey data (from socioeconomic household surveys, social 
media, mobile phone networks) (Leidig & Teeuw, 2015), 
and often by additionally using machine learning algorithms 
(Jean et al., 2016), can estimate consumption expenditure 
and asset wealth of the region analysed. Such approaches 
can assist efforts to track and target poverty. 

Current Indicator(s)

1.1.1 �Proportion of population below the international 
poverty line, by sex, age, employment status and 
geographical location (urban/rural)

1.2.1 �Proportion of population living below the national 
poverty line, by sex and age

1.2.2 �Proportion of men, women and children of all ages 
living in poverty in all its dimensions according to 
national definitions

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 1.1.1

Computation method

EO is not currently discussed in the methodological 
guidelines for these indicators, but there is scope for it 
to be used alongside the current methods. The guidelines 
set out a poverty standard, so that it can be consistently 
compared across different countries – the extreme poverty 
line is set at $1.90 per day in 2011 (World Bank, 2015). 
Once this is calculated, the working poverty rate can be 
calculated as = (employed persons living on less than 
$1.90 a day/total employment) x 100.

The level of poverty in an area is estimated through 
socioeconomic household surveys, which are based on census 
data. ‘Big Data’ has the potential to help understand poverty 
trends, e.g. through electronic money schemes. Most studies 
are limited to using single source data, such as mobile phone 
data or environmental data from satellite imagery, rather 
than amalgamating different sources together. However, 
new studies have combined these sources to create a more 
accurate representation of poverty. 

EO data collects information on metrics such as night 
time lights, vegetation cover, meteorological conditions 
(e.g. flood or drought events), proximity to services (e.g. 
schools, hospitals), density of infrastructure (e.g. roads, 
railway, waterways). These data can be used alongside 
survey data to estimate the level of economic activity, 
food scarcity, households at risk of extreme events such 
as floods or droughts, and the services and infrastructure 
available. These data are useful, but lack information about 
population structure and other socioeconomic data that 
are directly (e.g. household income) or indirectly (e.g. child 
mortality) relating to poverty.

In many rural areas, e.g. sub-Saharan Africa, internet 
usage is low, although mobile phones are widely used 
and Call Data Records can capture how, when, where and, 
with whom individuals communicate. Further, electronic 
money schemes like M-Pesa provide information on the 
consumption patterns. These can capture spatial and 
temporal patterns of human interaction. 

Limitations

In terms of in-situ data, the main limitation is the cost of 
the environmental surveys, as well as the time required to 
undertake them. Open Street Map is crowdsourced data 
which are used to map infrastructure, housing and buildings 
– and provide useful plans of unmapped areas; however 
the level of completeness varies. There is also selection 
bias in mobile phone ownership, some countries only have 
one provider, and mobile phone usage may not incorporate 
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some demographic subgroups like children and the ultra-
poor. For EO data, there is varying spatial granularity at 
which the different datasets are available which requires 
an aggregation mechanism to merge them. Clouds can 
obscure data, especially in tropical and subtropical regions. 
Very high resolution data can be prohibitively expensive, 
and high expertise is required to process and analyse it.     
When using EO data, it is often aggregated together 
from different time series, to combat issues of data gaps 
through cloud cover etc. However, data availability from 
other sources, such as access to mobile phone data, can 
often be an issue – e.g. access to call data records have 
to be obtained through individual telecommunication 
companies. In addition, EO data is complemented through 
the use of model fitting, e.g. through Gaussian Process 
regression (Pokhriyal & Jacques, 2017), and therefore there 
are challenges with variance and uncertainty.  

Data sources

Data category Data sources Website

Source satellite data
WorldView, GeoEye, QuickBird, IKONOS 
satellite imagery  

https://www.maxar.com

Landsat satellites https://earthexplorer.usgs.gov

Global/regional 
datasets

The Global Urban Footprint (GUF) / World 
Settlement Footprint (WSF)

https://urban-tep.eu

The Global Human Settlement Layer 
(GHSL)

https://ghsl.jrc.ec.europa.eu/data.php

Software, tools and 
platforms

The GEO Human Planet initiative https://ghsl.jrc.ec.europa.eu/HPI.php

The Urban Thematic Exploitation Platform 
(U-TEP)

https://urban-tep.eu

Key messages for countries on EO contribution to the 
computation method

• �EO data collects information on metrics such as 
night time lights, vegetation cover, meteorological 
conditions etc.

•�These data can be used alongside other socioeconomic 
data that relate to poverty.

• �Poverty can be inferred from a combination of these 
EO and non-EO datasets and mapped out spatially by 
geographic location but further statistics are required 
to disaggregate by gender and age.
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Indicator 1.2.1

Computation method

EO is not currently discussed in the methodological 
guidelines for these indicators. However, there is potential 
for Earth Observation (EO) data to be used to track and 
target poverty, and aid the allocation of scarce resources 
which can help improve human livelihoods.

Currently, the formula for calculating the proportion of 
total, urban and rural population living below the national 
poverty line, or headcount index is:

 
Income data is gathered through nationally representative 
household surveys. National poverty rates use a country 
specific poverty line, which is reflective of the country’s 
economic and social circumstances. This can be adjusted 
to reflect different regions within a country – i.e. costs of 
living are generally higher in urban areas than rural. 

Limitations

National poverty estimates use a different methodology to 
international poverty. National poverty rates are defined at 
country-specific poverty lines in local currencies, which are 
different in real terms across countries, and different from 
the $1.90 a day international poverty line.   

Key messages for countries on EO contribution to the 
computation method

• �There currently are no EO products that can help establish 
poverty specifically by sex and age, however there is 
potential for EO to be used to track and target poverty, 
e.g. by mapping the spatial extent of informal settlements 
(see indicator 11.1.1). 

NASA (2018) US Uses Landsat satellite data to fight 
hunger, poverty. Landsat Science: Nasa. [Online] 
Available at: 
https://landsat.gsfc.nasa.gov/u-s-uses-landsat-satellite-
data-to-fight-hunger-poverty/ [Accessed 28th June 
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Indicators 1.1.1
Proportion of 
population below the 
international poverty 
line, by sex, age, 
employment status 
and geographical 
location (urban/rural)

1.2.1
Proportion of population 
living below the national 
poverty line, by sex and 
age

1.2.2
Proportion of men, 
women and children 
of all ages living 
in poverty in all its 
dimensions according 
to national definitions

Custodian agency World Bank; ILO World Bank

Tier I I II

Status of step-by-step methodology 
document on the metadata repository

Published Published Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status  of EO in indicator 
guidelines

Technical capacity required

Availability of  global EO 
data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting 
calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for 
gaps in the EO record?

Overall EO relevance

Comments to support criteria

EO is only partially 
relevant, due to lack 
of information in 
indicator guidelines 
and high technical 
capacity.

EO is also only partially 
relevant, for similar 
reasons as the above, 
in addition to the 
limited EO data products 
available. There 
currently are no EO  
products that can 
help establish poverty 
specifically by sex and 
age.

Not supported by EO.
EO cannot be used to 
support any evidence 
of  
non-material poverty 
(e.g. education, 
knowledge, culture, 
lack of voice etc.). 
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Target 1.4

By 2030, ensure that all men and women, in particular 
the poor and the vulnerable, have equal rights to economic 
resources, as well as access to basic services, ownership 
and control over land and other forms of property, 
inheritance, natural resources, appropriate new technology 
and financial services, including microfinance.

How can EO be used to help countries achieve the target? 

Improving human well-being and access to services, EO 
data can help develop various proxy indicators of human 
well-being, for example access to services such as electric 
power, as well as patterns of human interaction

Remote sensing and call data records can help monitor 
access to basic services. Call Data Records (CDR) provide 
information on where, when, how and with whom someone 
made a mobile phone call – mainly used for billing purposes, 
but also provide spatial information on patterns of human 
interaction. Mobile phone usage and movement can indicate 
household access to financial resources and services, for 
example, via electronic money schemes such as M-Pesa. 
Remote sensing can capture information on biophysical 
properties such as rainfall, temperature and vegetation cover 
as well to variables such as infrastructure (e.g. railway, main 
roads, waterways), distance to water sources and power 
plants, electricity use, agriculture productivity and distance 
to roads and urban areas (which reflects access to markets 
and information). The state of the road network (e.g. if it’s 
a dirt track or an impervious road) can be derived through 
Open Street Map, but can be combined with remote sensing 
data to provide a more detailed picture. 

Current Indicator(s)

Indicator 1.4.1 �Proportion of population living in households 
with access to basic service.

Indicator 1.4.2 �Proportion of total adult population with 
secure tenure rights to land, with legally 
recognized documentation and who perceive 
their rights to land as secure, by sex and by 
type of tenure.

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 1.4.1

Indicator 1.4.1 was a Tier III indicator at the time of the 
analysis, and therefore had no published metadata. However, 
it has been considered within this analysis, as it is perceived 
that Earth Observation (EO) has clear potential to improve 
monitoring. 

Data will be collected through routine national surveys, service 
providers, directly from country/local government data or 
websites, joint surveys with national agencies and international 
entities. This will be complemented through EO data and 
remote sensing techniques. For example, relative welfare can 
be measured through travel time to market towns, percentage 
of a village covered with woodland, percentage of a village 
covered with winter crop. Satellite data can be used to measure 
electrification, through measuring night-time luminosity (Ghosh 
et al., 2013). The level of technology use can be an indicator of 
access to services – for example number of households with 
internet access or mobile phone usage (Steele et al., 2016). 

The work plan divides basic services into three categories: basic 
infrastructure services, social services, quality of life services. 
However, this list is not exhaustive. There is a lack of consistent 
definition on what constitutes a basic service, and this is likely 
to be interpreted differently, depending on who is collecting, 
reporting and using the data, respectively.

There are limitations to the proxies used to describe these 
services, e.g. in some rural villages, rural electrification is often 
not accurately measured due to intermittent power supply. 
Additionally remote sensing and call data records (e.g. where, 
when, how and with whom someone made a mobile phone 
call) mainly used for billing purposes, but also provide spatial 
information on patterns of human interaction. These are often 
generated at different spatial scales, which can be difficult to 
reconcile. 

It is proposed that data will be collected through national 
surveys, service providers, directly from country/local 
government data or websites, joint surveys with national 
agencies and international entities. National statistic systems 
will be a key source of data: selected national statistical agencies 
will be consulted on methodological development and piloting 
in a limited set of countries. 

As the methodology for indicator 1.4.1 was not yet finalised 
at the time of the analysis (still a Tier III), the EO-based 
methodology is not discussed in the same detail as Tier I and 
II indicators.

Data sources and tools

There are a number of global EO-based tools that are available 
that could assist NSOs and indicator custodians with delivering 
and implementing EO-based methodologies in relation to 
poverty. For example:  The Global Urban Footprint (GUF) / 
World Settlement Footprint, The Global Human Settlement 
Layer (GHSL), The GEO Human Planet initiative. 

Key messages for countries on EO contribution to the 
computation method

• �Data will be collected through surveys, and there is 
scope for this to be complemented with EO data, such 
as night-time luminosity – which will give an indication 
of access to services. 
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Indicators 1.4.1
Proportion of population living in 
households with access to basic 
service.

1.4.2
Proportion of total adult 
population with secure 
tenure rights to land, 
with legally recognized 
documentation and who 
perceive their rights to land 
as secure, by sex and by 
type of tenure.

Custodian agency UN-Habitat 
UN-Habitat
World Bank

Tier I II

Status of step-by-step methodology document on 
the metadata repository

Unpublished 
(Tier III at the time of the 
analysis)

Unpublished 
(Tier III at the time of the 
analysis)

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status  of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

EO data and GIS techniques 
can be applied to measure the 
distance to some basic services 
(e.g. road network, waterways, 
main cities etc.). 

Not supported by EO.
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Target 1.5

By 2030, build the resilience of the poor and those in 
vulnerable situations and reduce their exposure and 
vulnerability to climate-related extreme events and other 
economic, social and environmental shocks and disasters

How can EO be used to help countries achieve the target?

The frequency and severity of natural disasters have been 
increasing in the last decades. Research has revealed 
that it is generally the poor who tend to suffer worst 
from disasters. The fact that climate change is expected 
to increase the frequency and intensity of these events 
threaten to derail international efforts to eradicate poverty. 

The importance of EO in disaster management and 
assessment has gained increasing significance over the past 
years. One of the ways EO can contribute to build resilience 
of vulnerable populations is through disaster-risk reduction. 
EO datasets and methods can contribute to disaster 
risk management and reduction by providing relevant 
information to the full cycle of disaster and environmental 
shock management: mitigation, preparedness, warning and 
response. 

EO has proven successful for a wide range of disaster 
types, particularly for flooding, extreme drought events, 
earthquakes, landslides and volcanic eruptions. In fact, EO 
data is providing a reliable data basis for deriving useful 
information such as the extent of damaged area along with 
the land-use types as well as the population affected. This 
can be done through hazard mapping and risk modelling, 
real time monitoring, producing input data for feeding 
early warning systems, or for producing maps to support 
disaster response actions. For a comprehensive review 
on how EO can contribute to disaster-risk management, 
see ESA (2015). EO data lies also at the heart of climate 
modelling, which represent key tools to inform actions 
aiming to reduce vulnerability to climate change. 

Current Indicator(s):

1.5.1: �Number of deaths, missing persons and directly 
affected persons attributed to disasters per 100,000 
population

1.5.2: �Direct economic loss attributed to disasters in relation 
to global gross domestic product (GDP)

1.5.3: �Number of countries that adopt and implement 
national disaster risk reduction strategies in line with 
the Sendai Framework for Disaster Risk Reduction 
2015-2030

1.5.4: �Proportion of local governments that adopt and 
implement local disaster risk reduction strategies in 
line with national disaster risk reduction strategies

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 1.5.2

Computation method

Although Target 1.5 consists of four indicators, we are 
concentrating our analysis on 1.5.2 as it is the only indicator 
to which EO has a relevant contribution. The indicator 
measures the ratio of direct economic loss, defined as the 
monetary value of total or partial destruction of physical 
assets existing in the affected area, attributed to disasters 
in relation to the Gross Domestic Product (GDP). 

EO datasets and methods can be used to gather useful 
information on the economic losses attributed to disasters 
and hence, the computation of indicator 1.5.2. Direct 
economic loss due to disasters can be estimated from the 
quantification of damaged areas (such as flooded surfaces, 
affected transport infrastructures, burnt areas, landslide 
scars, etc.) using optical imagery and radar data at different 
spatial resolutions. However very high spatial resolutions 
are particularly useful for mapping hotspots of damage such 
as in urban areas where high to medium spatial resolution 
imagery might underestimate the damaged area.

In detail, the indicator is a simple summation of five 
economic loss indicators divided by GDP, which include: 
(1) agricultural assets (based on crops, livestock, fisheries, 
apiculture, aquaculture and forest sectors as well as 
associated facilities and infrastructure); (2) other productive 
assets (disaggregated by economic sector, including 
services, according to standard international classifications); 
(3) housing (disaggregated according to damaged and 
destroyed dwellings); (4) critical infrastructure; and (5) 
cultural heritage. EO datasets and methods, combined 
with land cover maps and other thematic maps can help 
estimate such losses, especially for agriculture (FAO, 2017). 

Treatment of missing values

Inconsistent and the lack of detailed data is a key issue. 
Systematic collection and cataloguing is required to make 
information robust enough for SDG reporting. This would 
require ground observations of damage to complement 
the damage mapped in EO imagery. Airplane and drone 
monitoring technologies could also replace missing EO 
derived estimates of damage if deployed on time.

Sources of discrepancies

Standardization of measurement approaches between 
countries is also a challenge but is being addressed 
(through Sendai and SDG processes). 
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Limitations

The indicator is based on many sub-indicators from multiple 
sectors and data sources and is therefore data-intensive. 
The area of damaged infrastructure reported using EO still 
needs to be converted to economic loss. Values of global 
GDP will need to be derived elsewhere. Different EO data 
will be needed to assess the impacts depending on the 
nature of the disaster.

Apart from the challenge on collecting such datasets, 
financial and technical capacity at the country level 
represent a challenge, too. Acquiring imagery at the time 
of the disaster can also be challenging and could require 
specific tasking of satellite assets. This approach is limited 
by resources and budgets and is largely in the domain of 
commercial image providers.

Data sources

Key messages for countries on EO contribution to the 
computation method

• �It is likely that an EO-based method for the indicator 
would have to be customised for the nature of the 
disaster (fire, floods, etc.).

• �Current EO based assets for disaster monitoring mostly 
focus on post disaster recovery efforts but for this 
indicator would need to be enhanced to evaluate physical 
damage on infrastructures and productive lands.

Data category Data sources Website

Global/regional 
datasets

The Global Urban Footprint (GUF) / World 
Settlement Footprint (WSF)

https://urban-tep.eu

The Global Human Settlement Layer 
(GHSL)

https://ghsl.jrc.ec.europa.eu/data.php

Emergency Events Database (EM-DAT) https://www.emdat.be

Disasters and conflicts:  
UNEP Data Explorer:  

http://geodata.grid.unep.ch/results.php

Software, tools and 
platforms

The GEO Human Planet initiative https://ghsl.jrc.ec.europa.eu/HPI.php

Global Gridded Geographically Based 
Economic Data (G-Econ), v4 (1990, 1995, 
2000, 2005)

http://sedac.ciesin.columbia.edu/data/set/spatiale-
con-gecon-v4/docs

European Flood Awareness System https://www.efas.eu

European Forest Fire Information System http://effis.jrc.ec.europa.eu

Operational or  
commercial services

The UN-SPIDER programme http://www.un-spider.org
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Indicators 1.5.1
Number of 
deaths, missing 
persons and 
directly affected 
persons 
attributed 
to disasters 
per 100,000 
population

1.5.2
Direct economic 
loss attributed 
to disasters 
in relation to 
global gross 
domestic 
product (GDP)

1.5.3
Number of 
countries that 
adopt and 
implement 
national 
disaster risk 
reduction 
strategies 
in line with 
the Sendai 
Framework 
for Disaster 
Risk Reduction 
2015-2030

1.5.4
Proportion 
of local 
governments 
that adopt and 
implement 
local disaster 
risk reduction 
strategies 
in line with 
national disaster 
risk reduction 
strategies

Custodian agency UNISDR

Tier II II II II

Status of step-by-step methodology 
document on the metadata repository

Published Published Published Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status  of EO in indicator 
guidelines

Technical capacity required

Availability of  global EO 
data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting 
calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for 
gaps in the EO record?

Overall EO relevance

Comments to support criteria

Not 
supported by EO

Damage to 
infrastructure 
and productive 
land uses can 
be directly 
mapped from 
EO. However, 
GDP impact can 
only be inferred 
from such 
visible damage.

Not supported 
by EO

Not supported 
by EO
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Target 2.3

By 2030, double the agricultural productivity and incomes 
of small-scale food producers, in particular women, 
indigenous peoples, family farmers, pastoralists and 
fishers, including through secure and equal access to land, 
other productive resources and inputs, knowledge, financial 
services, markets and opportunities for value addition and 
non-farm employment.

How can EO be used to help countries achieve the target?

Smallholder farmers play a key role in global food 
production, particularly in developing countries. Is 
estimated that small-scale farming systems provide up to 
80 percent of the food supply in Asian and sub-Saharan 
Africa. These systems usually host the majority of poor and 
hungry people worldwide. Therefore, increasing agricultural 
productivity in these systems would be key to achieve food 
security.

Even though EO has been proven potentially useful 
to contribute to the management of farming, pastoral 
and forestry systems at regional scales, particularly by 
generating data to feed crop simulation models and early 
warning systems, it still has limitations to provide the type 
of fine scale data needed to feed models operating at the 
farm scale. This is mainly due to the need for high spatial 
and temporal resolution and repeat monitoring on demand, 
which satellites cannot yet guarantee (Jin et al. 2018, 
Kasampalis et al. 2018). The Global Ecosystem Dynamics 
Investigation Lidar (GEDI), to be launched in 2018, is 
expected to produce promising data to fill this gap, at least 
for forestry systems.

Further efforts are needed in order to implement ways to 
put the information derived from crop simulation models 
and early warning systems in the hands of small-scale food 
producers, as required by this target. Recent pilot cases 
suggest that information derived from EO, such as weather 
forecasts, can be made accessible to small-scale food 
producers even in isolated areas in a way that can inform 
crop management decisions, such as the time to plant and 
crop variety selection (UNDP, 2016).

As this indicator was classified as Tier III at the time of 
the analysis, no internationally established methodology or 
standards were yet available. 

Current Indicator(s):

There are two agreed indicators for this target: 

2.3.1: �Volume of production per labour unit by classes of 
farming/pastoral/forestry enterprise size.

2.3.2: �Average income of small-scale food producers, by sex 
and indigenous status

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 2.3.1

Computation method

The computational method for indicator 2.3.1 was not 
yet finalised and published at the time of the analysis. 
However, results from discussions so far suggest that the 
methodology will entail 3 different steps:

1) �Identification of the target population (“small-scale food 
producers”), 

2) �Computation of the “volume of production per labour 
unit by classes of farming/pastoral/forestry enterprise 
size” 

3) �Calculation of “average income of small-scale food 
producers, by sex and indigenous status”. 

Much of the discussion during the development of this 
indicator has focused on an adoption of an international 
definition for “small-scale food producer”. The custodian 
agency of this indicator, the FAO, proposes to define this 
concept based on the physical size of the food producer, 
as expressed by the amount of operated land and number 
of livestock heads in production, and the economic size of 
the food producer, as expressed by its revenues. Labour 
productivity is proposed to be computed as the ratio of the 
value of agricultural/livestock/fisheries/forestry production 
and the labour input (number of labour days per small 
scale farmer).

EO could help support the calculation indicator 2.3.1 
by estimating some of the parameters needed for the 
calculation of these indicator. For example, EO could 
support the estimation of areas under cultivation, which is 
one of the required parameters to define “small-scale food 
producers” (GEOSS 2009), in addition to economic size. EO 
can also support the estimation of agricultural and forestry 
yields with reasonable accuracy. 

Limitations

In addition of farm area and agricultural production, the 
methodology under discussion also requires the estimation 
of parameters such as the economic size (expressed through 
the gross monetary value of agricultural production) of the 
labour input (expressed as the number of labour days and 
number of small-scale food produced), which cannot be 
computed by EO.
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Key messages for countries on EO contribution to the 
computation method

• �EO is very well suited to support the increase of 
agricultural productivity through the estimation of crop 
yields, assessing nutritional and water requirements, 
and weed control.  However, it still has limitations to 
provide the type of fine scale data needed to feed models 
operating at the farm scale.

• �EO can also support the calculation of some of the 
parameters needed for the computation of this indicator, 
particularly for countries limited agricultural census data.  

Data sources

Data category Data sources Website

Global/regional 
datasets

Copernicus Dry matter productivity product https://land.copernicus.eu/global/products/dmp

Reference List

GEOSS (2009). Best practices for crop area estimation 
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Information for Resilient Development in Africa. 
Available at: https://reliefweb.int/sites/reliefweb.int/
files/resources/communications-toolkit-v3.pdf
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Indicators 2.3.1
Volume of production per 
labour unit by classes of 
farming/pastoral/forestry 
enterprise size.

2.3.2
Average income of small-
scale food producers, by sex 
and indigenous status

Custodian agency FAO
Tier II II

Status of step-by-step methodology document on 
the metadata repository

Unpublished 
(Tier III at the time of the 
analysis)

Unpublished 
(Tier III at the time of the 
analysis)

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status  of EO in indicator guidelines

Technical capacity required

Availability of global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

As the metadata is not yet 
finalised, not all criteria could 
be assessed. However, based 
on criteria assessed, EO may 
support the computation 
of some of the parameters 
required to calculate the 
indicator 

Not supported by EO.
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Target 2.4

By 2030, ensure sustainable food production systems and 
implement resilient agricultural practices that increase 
productivity and production, that help maintain ecosystems, 
that strengthen capacity for adaptation to climate change, 
extreme weather, drought, flooding and other disasters and 
that progressively improve land and soil quality

How can EO be used to help countries achieve the target?

Continuing population and consumption growth is likely to 
increase the global demand for food in the next decades. 
The achievement of food security will require profound 
changes in the global food and agriculture system. At the 
same time, unsustainable agriculture expansion has created 
numerous environmental problems, such as soil erosion, 
water pollution as well as greenhouse gases emissions. 
This target aims to contribute to this goal by increasing 
the economic, social and environmental sustainability of 
agricultural practices, including through enhancing the 
resilience to climate change and extreme whether events. 

EO methods can play an important role in increasing 
agricultural productivity as well as minimising the 
environmental impact of the agricultural sector. Some of 
the ways EO has proven successful to contribute to increase 
the sustainability of agricultural production include: 
(1) yield estimation, (2) vegetation vigour and drought 
stress monitoring, (3) assessment of crop phenological 
development, (4) crop acreage estimation and cropland 
mapping and (5) mapping of disturbances and land use/
land cover (LULC) changes (Atzberger, 2014). EO datasets 
can also be used by countries to inform spatial land use 
planning and minimize the potential environmental impact 
of crop expansion through optimizing the allocation of lands 
(Laurence et al. 2014). In addition to crops, satellite remote 
sensing techniques can also be applied for rangeland 
monitoring and management (Ali et al. 2016). EO data and 
methods can be useful for assessing the future exposure to 
climate change as well as to extreme weather events, as 
explained in the 1.5.2 indicator factsheet.

Current Indicator(s)

2.4.1. �Proportion of agricultural area under productive and 
sustainable agriculture.

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 2.4.1

Computation method

The computational method for indicator 2.4.1 is under 
discussion and has not yet been finalised or officially 
published but is in work plan format. The suggested 
computation method is as follows:

SDG 2.4.1 = Area under productive and sustainable 
agriculture / Agricultural land area where:

The denominator, Agricultural land area = arable land 
+ permanent crops + permanent meadows and pastures

The numerator, Area under productive and sustainable 
agriculture, captures the three dimensions of sustainable 
production: environmental, economic and social.

Much of the discussion during the development of 
this indicator has focused on a clarification of terms, 
particularly for the concept of ‘sustainable agriculture’. 
Progress to date suggests that the intention is 
to design a threshold-based aggregate indicator 
which, through different sub-indicators, captures the 
economic, environmental and social main dimensions of 
sustainability. The estimation of proportion of agricultural 
area under sustainable agriculture, according to the work 
plan, will be based on data most likely collected through 
agricultural surveys and household surveys organized 
by the national statistical agencies, with support from 
the custodian agency (FAO) or other international 
agencies to ensure methodological harmonization. The 
opportunity for EO in supporting this indicator is mainly 
to benchmark the sustainability of farming practices. 
For example, it is unlikely that farmers would be able 
to assess the environmental impact of their farming 
practices on issues like fertilizer pollution or pesticide 
impact without a tool that can monitor impact in the 
wider landscape. An EO-based monitoring system can 
measure the impact of agriculture on the environment.

Regarding the computational method, EO technologies 
could particularly be useful to inform the agricultural 
land area. Agricultural land area is a common category in 
EO-derived land cover/land use maps. Satellite remote 
sensing has been used for several decades to support 
land cover mapping. It is the most cost-effective means 
for gathering spatially explicit information over large 
areas with high revisit frequency in a consistent and 
systematic manner.

EO could also be a tool to contribute to several  
sub-indicators of the environmental dimension of 
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the indicator, such as farm output value per hectare, 
prevalence of soil degradation, variation in water 
availability and use of biodiversity-friendly practices. 
In addition, EO can provide support for cost-effective 
collection of agricultural and rural data by optimizing 
sampling designs and support to field surveys. 

However, the current work plan specifies that this 
indicator will be assessed at the farm level. This is likely 
to require high to very high resolution EO-based data in 
order to produce meaningful results. 

Limitations

In some cases, some of the definitions and assumptions of 
the EO-product might not match that of the sub-indicator, 
potentially leading to misleading numbers being reported. 
It could also be the case that validation has not been 
performed for a certain product for the conditions present 
in the country. Most freely available EO data might not be 
precise enough for field level monitoring. However field 
size can vary by country and in countries where industrial 

scale agriculture is practiced with commensurably large 
field sizes, VHR EO data might not be a necessity for 
computing this indicator.  

Key messages for countries on EO contribution to the 
computation method

• �The methodology for this indicator is in development but 
it is likely that EO will play a role in the computational 
method, particularly for supplementing farm survey data

• �If this indicator is calculated at the farm level, high to 
very high resolution EO is likely to be needed (depending 
on national context of field sizes).

• �EO could also be used to quantify the amount of 
agricultural area, using land-use/land-cover products.

• �EO also has potential in assessing the impact of 
unsustainable farming and for monitoring the robustness 
of the indicator in monitoring the level of sustainability 
of agriculture with regards to wider landscape condition. 

Data sources

Data category Data sources Website

Global/regional 
datasets

Copernicus Dry matter productivity product https://land.copernicus.eu/global/products/dmp

Software, tools and 
platforms

GEO Global Agricultural Monitoring 
(GEOGLAM)

https://cropmonitor.org/index.php/data-and-tools/
cmet

Sentinel 2 for agriculture monitoring  http://www.esa-sen2agri.org

Sentinels for Common Agriculture Policy http://esa-sen4cap.org 

Reference List

Ali, I., Cawkwell, F., Dwyer, E., Barrett, B. & Green, S. 
(2016) Satellite remote sensing of grasslands: from 
observation to management, Journal of Plant Ecology, 
9 (6): 649–671

Atzberger, C. (2014) Advances in Remote Sensing of 
Agriculture: Context Description, Existing Operational 
Monitoring Systems and Major Information Needs. 
Remote Sensing (5): 949-981

FAO (2018) Methodological note, November 
2018:http://www.fao.org/3/CA2639EN/ca2639en.pdf

Laurance, W.F., Sayer, J., & Cassman, K.G. (2014) 
Agricultural expansion and its impacts on tropical 
nature. Trends in Ecology & Evolution, 29 (2): 107-116

https://cropmonitor.org/index.php/data-and-tools/cmet


Compendium of guidance on Earth Observation to support the targets and indicators of the Sustainable Development Goals 39

TARGET 2.3COMPENDIUM OF EO CONTRIBUTION TO THE SDG TARGETS AND INDICATORS

Indicators 2.4.1
Proportion of agricultural area under productive 
and sustainable agriculture.

Custodian agency FAO

Tier II

Status of step-by-step methodology document on the metadata 
repository

Methodological note available from November 
2018 

Relevance of EO for 
the indicator criteria

Maturity of EO technologies

Status  of EO in indicator guidelines

Technical capacity required

Availability of global EO data

Robustness of pro-
posed  
methodology Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the EO 
record?

Overall EO relevance

Comments to support criteria

Household surveys have been identified as 
the main data collection instrument for this 
indicator. EO will have a supporting role, with a 
focus on environmental parameters that affect 
larger areas than the individual farm, or for 
parameters where it is unlikely that the farmers 
can evaluate the effects locally
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COMPENDIUM OF EO CONTRIBUTION TO THE SDG TARGETS AND INDICATORS TARGET 3.3TARGET 3.3

Target 3.3

By 2030, end the epidemics of AIDS, tuberculosis, malaria 
and neglected tropical diseases and combat hepatitis, 
water-borne diseases and other communicable diseases

How can EO be used to help countries achieve the target?

This target aims to end three of the world’s major 
epidemics, which combined claim millions of lives per year 
(Murray et al., 2014). This makes this target one of the 
SDG targets with the greatest potential impact in terms of 
reducing mortality. 

The utility of EO methods for improving the understanding, 
prevention, and control of vector-borne diseases has been 
extensively demonstrated, particularly for malaria (Gebreslasie, 
2015). EO data has been used, for instance, to derive 
environmental data to feed malaria risk models, identification 
of potential vector habitats and to inform the development 
of early warning systems. Some of the EO-derived data that 
have been applied to malaria epidemiology include: land cover, 
land and sea surface temperature vegetation indices such as 
NDVI and enhanced vegetation index, precipitation and actual 
evapotranspiration. Results of the models developed with EO-
derived data can be useful to identify locations where the risk 
of disease is highest and direct resources to the population 
most in need. EO-derived data can also be applied to develop 
risk models for other tropical diseases such as dengue or 
schistosomiasis, among others. 

Current Indicator(s)

There are five indicators for this target:

3.3.1 �Number of new HIV infections per 1,000 uninfected 
population, by sex, age and key populations

3.3.2 �Tuberculosis incidence per 100,000 population

3.3.3 �Malaria incidence per 1,000 population

3.3.4 �Hepatitis B incidence per 100,000 population 

3.3.5 �Number of people requiring interventions against 
neglected tropical diseases 

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 3.3.3

Computation method

Incidence of malaria is defined at the country level as 
the number of new cases of malaria per 1,000 people 
at risk each year. The number of new cases of malaria is 
estimated from the number of malaria cases reported by 
the Ministry of Health of each country, using a series of 
statistical methods.

For some high-transmission countries where the quality 
of case reporting is considered insufficient for the above-
mentioned method, estimates of the number of malaria 
cases are derived from the Malaria Atlas (https://map.ox.ac.
uk/making-maps/) a geospatial model which is partly feed 
by EO-derived data, such as land surface temperature and 
vegetation indices (Bhatt et al., 2015)

Treatment of missing values

For missing values of the parameters a distribution based on 
a mixture of the distribution of the available values is used. 
When no reported data is available the number of cases is 
interpolated taking into account the population growth. EO 
datasets and methods could also represent an alternative 
way to fill the gaps in areas with missing values. 

Limitations

While EO has great potential to contribute to reducing 
the impact of malaria and other vector-borne diseases, 
to be effective, it must be adopted as part of a holistic, 
multi-disciplinary approach, as it will necessarily involve 
coordination among different levels of government, health 
facilities, scientists and local population.

Key messages for countries on EO contribution to the 
computation method:

• �The agreed methodology to compute this indicator is 
based on a series of statistical methods, EO-derived 
methods are only envisaged to be used when the 
quality of case reporting in high incidence countries is 
considered insufficient.

• �EO derived data, combined with geospatial modelling, 
can also be useful to fill the gaps in areas with missing 
values elsewhere. 
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Data sources

Data category Data sources Website

Global/regional 
datasets

Malaria Atlas Project https://map.ox.ac.uk/making-maps
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COMPENDIUM OF EO CONTRIBUTION TO THE SDG TARGETS AND INDICATORS TARGET 3.3

Indicators 3.3.1
Number of new 
HIV infections 
per 1,000 
uninfected 
population, by 
sex, age and 
key populations

3.3.2
Tuberculosis 
incidence 
per 100,000 
population

3.3.3
Malaria incidence 
per 1,000 
population

3.3.4
Hepatitis B 
incidence 
per 100,000 
population

3.3.5
Number of 
people requiring 
interventions 
against neglected 
tropical diseases

Custodian agency UNAIDS WHO WHO WHO WHO
Tier I I I I I

Status of step-by-step 
methodology document on the 
metadata repository

Published Published Published Published Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status  of EO in 
indicator guidelines

Technical capacity 
required

Availability of 
global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with 
Reporting calendar

Sensitivity to 
change

Is it scalable 
(spatial)?

Is there a 
substitute for gaps 
in the EO record?

Overall EO relevance

Comments to support criteria

Not supported 
by EO.

Not supported 
by EO.

Although 
current indicator 
methodology only 
envisages the use 
of EO derived data 
when the quality 
of case reporting 
is considered 
insufficient, 
the potential 
of geospatial 
modelling to 
provide accurate 
estimations of 
Malaria prevalence 
is high.

Not supported by 
EO.

Not supported 
by EO.
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COMPENDIUM OF EO CONTRIBUTION TO THE SDG TARGETS AND INDICATORS TARGET 3.9

Target 3.9

By 2030, substantially reduce the number of deaths and 
illnesses from hazardous chemicals and air, water and soil 
pollution and contamination

How can EO be used to help countries achieve the target?

EO data can be used to monitor the level of air quality data 
(e.g. PM2.5, CO2, CO, NOx, SO2) (van Donkelaar et al., 2010) 
water quality data (E.g. Chlorophyll-a, turbidity) (Mohamed, 
2015), as well as soil pollution data (e.g. concentration 
of hydrocarbons) (Karkush et al., 2014). These can be 
correlated with census data on human health and mortality 
to monitor progress towards reducing the number of deaths 
and illness from hazardous chemicals and air, water and 
soil and contamination. In order to reduce the number of 
deaths by creating public awareness, a wider forecasting 
system based on modelling EO data for the likely risk of 
danger from hazardous chemicals and air, water and soil 
pollution and contamination is needed.

Indicator(s)

3.9.1 �Mortality rate attributed to household and ambient 
air pollution

3.9.2 �Mortality rate attributed to unsafe water, unsafe 
sanitation and lack of hygiene (exposure to unsafe 
Water, Sanitation and Hygiene for All (WASH) 
services)

3.9.3 �Mortality rate attributed to unintentional poisoning.

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 3.9.1

Computation method

EO is not currently discussed in the methodological 
guidelines for these indicators, but there is scope for it to 
be used alongside the current methods. 

Household census data on health and mortality (e.g. 
respiratory disease) can be used alongside pollution data. 
Satellite based observations can be used to estimate 
a number of pollutants. Anderson et al. (2012) used 
annual ground level PM2.5 concentrations by combining 
aerosol vertical profiles obtained from the global chemical 
transport model GEOS-Chem with total column aerosol 
depth obtained from 2 spectroradiometers (MODIS and 
MISR). Concentrations were averaged over a number of 
years. Similarly, NO2 concentrations can be estimated by 
combining GEOS-Chem NO2 profiles with tropospheric NO2 
columns obtained from the satellite Aura. O3 concentrations 

can be modelled using the two-way nested TM5 Global 
Chemical Transport Model (Anderson et al., 2012).  

Evans et al. 2013 used satellite data to derive PM2.5 
concentration estimates, and then used previously 
developed concentration- response functions to calculate 
the relative risks of associations between PM2.5 and four 
cases of mortality: all causes, cardiopulmonary disease, 
lung cancer, and ischemic heart disease. 

Data from Sentinel-5P has recently been made available 
– allowing O3, CO and NO2 data to be recorded. SO2 data 
was made available in September 2018. The Sentinel-
5P spacecraft uses a TROPOMI instrument which uses 
passive remote sensing techniques to measure at the 
Top Of Atmosphere (TOA) the solar radiation reflected 
by and radiated from the earth (ESAa, 2018). It is the 
first Copernicus satellite dedicated to monitoring the 
atmosphere. The TROPOMI instrument can provide highly 
detailed and accurate data about the atmosphere with a 
resolution up to 7 x 3.5km – detecting air pollution over 
individual cities (ESAb, 2018).

Aerosol dispersion varies spatially and temporally, 
therefore can display both local and regional patterns 
depending on their source. These characteristics limit the 
ability of fixed site ground-based PM monitors to capture 
large scale, regional and global PM distributions. Satellites 
can however detect this spatial variability both within the 
upper atmosphere and over broad regions. The choice of 
model parameters influenced the baseline estimates. 

Limitations

Additionally, there are errors associated with satellite 
measurements. There are often a lack of PM2.5 sensors 
in rural regions. PM2.5 calculations are often based 
on stimulations, which have measures of uncertainty 
(Anenberg et al., 2010).

Key messages for countries on EO contribution to the 
computation method

• �EO isn’t currently discussed in the methodological 
guidelines for these indicators

• �A number of satellites and instruments can be used to 
gather data on airborne pollutants, principally in the 
upper atmosphere, for example: Satellite Aura, Sentinel-
5P and Spectroradiometers MODIS and MISR. 

• �EO data can be used to highlight the risk of dangerous 
air pollution, when the level of pollutants exceeds a 
background normal

• �However, health information gathered through household 
census data is necessary to measure air pollution at the 
household level
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Data sources

Data category Data sources Website

Source satellite data

Satellite Aura

https://search.earthdata.nasa.gov
https://scihub.copernicus.eu

Sentinel-5P

MODIS

MISR

Software, Tools and 
Platforms

Water Observation and Information 
System (WOIS)

http://www.tiger.esa.int/page_eoservices_wois.php

AquaWatch https://www.geoaquawatch.org/ 
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Indicators       3.9.1
Mortality rate attributed 
to household and 
ambient air pollution

3.9.2
�Mortality rate 
attributed to unsafe 
water, unsafe 
sanitation and lack 
of hygiene (exposure 
to unsafe Water, 
Sanitation and Hygiene 
for All (WASH) 
services)

3.9.3
Mortality rate 
attributed to 
unintentional 
poisoning.

Custodian agency WHO

Tier I I I

Status of step-by-step methodology 
document on the metadata repository

Published Published Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status  of EO in indicator 
guidelines

Technical capacity required

Availability of  global EO 
data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting 
calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for 
gaps in the EO record?

Overall EO relevance

Comments to support criteria

An overall amber status: 
technology is available 
to use EO, and across 
different scales - 
highlighting sensitivity 
to change. However, 
there is currently little 
integration, and the 
technical capacity 
required to process and 
analyse is high. 

Not 
supported by EO

Not supported by EO
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COMPENDIUM OF EO CONTRIBUTION TO THE SDG TARGETS AND INDICATORS TARGET 4.A

EO could be integrated into calculations of the access to 
basic drinking water, which are mainly evaluated through 
survey data. However, one project in Lima, Peru has started 
to use EO to develop innovative solutions and planning 
tools for drinking water supply. It uses satellite-based 
remote sensing and water balance modelling alongside 
strategic decision-making tools and concepts for integrated 
water supply and wastewater disposal. 

In addition, satellite data could be used to aid Demographic 
and Health Surveys (DHS). These surveys are nationally 
produced household survey data, which are collected 
in 90 countries worldwide, and record information on 
demographic, social, economic and health-related outcomes. 
The DHS monitors the time it would take to reach a source 
of drinking water in minutes – this can also be applied for 
schools. This can be complemented with satellite imagery 
for information about surface waterbody extent and water 
quality to estimate access to basic drinking water at 
schools. 

Moreover, census data can also be used alongside 
satellite data. Currently census data provides information 
on electricity access, and satellite data can be used to 
complement this data by measuring electrification through 
measuring night-time luminosity (Min et al., 2013). Night 
light data can be easily downloaded from NOAA (National 
Oceanic and Atmospheric Administration). Many analyses 
only use the ‘stable lights’ datasets, which only includes 
locations with persistent lighting – excluding ephemeral 
events such as fires.  

Limitations

Measuring night time luminosity through satellites will be 
less reliable in areas with constrained power supplies, and 
for detecting non-electrified villages. 

Key messages for countries on EO contribution to the 
computation method

• �EO isn’t currently used to measure the percentage of 
schools by level of education with access to the given 
facility or service

• �There is scope for EO to be used to complement survey 
data such as DHS and census surveys. 

Data sources

Data category Data sources Website

Global/regional 
datasets

The Global Surface Water Explorer https://global-surface-water.appspot.com

Target 4.a

Build and upgrade education facilities that are child, 
disability and gender sensitive and provide safe, non-
violent, inclusive and effective learning environments for all

How can EO be used to help countries achieve the target?

EO data could be used to monitor aspects of education 
facilities, such as access to electricity and basic drinking 
water. However, it has limited capacity in measuring 
general effective learning environments. The target 
addresses the need to both build new and upgrade the 
existing education facilities. Hence, there is a gap for EO to 
contribute by identifying sites for development of education 
facilities, based on criteria such as proximity to human 
settlement and roads and upgrade damaged or defective 
buildings and other visible infrastructure. EO can therefore 
be used in urban and rural settings and as a planning tool 
for education facilities and help countries achieve their 
target. This will necessitate commercially produced very 
high resolution (VHR) imagery and may be a drawback for 
implementation of EO unless sufficiently financed.

Current Indicator(s)

4.a.1 �Proportion of schools with access to (a) electricity; (b) 
the Internet for pedagogical purposes; (c) computers 
for pedagogical purposes; (d) adapted infrastructure 
and materials for students with disabilities; (e) 
basic drinking water; (f) single-sex basic sanitation 
facilities; and (g) basic handwashing facilities (as per 
the WASH indicator definitions)

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 4.a.1

Computation method

EO is not currently discussed in the methodological 
guidelines for the indicator, but there is scope for it to 
be used alongside the current methods. The indicator is 
calculated as –

PSn,f = Sn,f

Where, PSn,f = percentage of schools at level n of 
education with access to facility f; Sn,f = schools at level n 
of education with access to facility f; Sn = total number of 
schools at level n of education.
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Reference List

Min, B., Gaba, K. M., Sarr, O. F. & Agalassou, A. (2013) Detection of Rural Electrification in Africa Using DMSP-OLS 
Night Lights Imagery. International Journal of Remote Sensing. 34 (22): 8118–8141.

Indicators 4.A.1
Proportion of schools with access to (a) 
electricity; (b) the Internet for pedagogical 
purposes; (c) computers for pedagogical 
purposes; (d) adapted infrastructure and 
materials for students with disabilities; (e) basic 
drinking water; (f) single-sex basic sanitation 
facilities; and (g) basic handwashing facilities 
(as per the WASH indicator definitions)

Custodian agency UNESCO-UIS

Tier II

Status of step-by-step methodology 
document on the metadata repository

Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status  of EO in indicator 
guidelines

Technical capacity required

Availability of  global EO 
data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting 
calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for 
gaps in the EO record?

Overall EO relevance

Comments to support criteria
This is amber as there is currently limited 
integration and use of EO with this indicator.
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Target 6.1

By 2030, achieve universal and equitable access to safe 
and affordable drinking water for all

How can EO be used to help countries achieve the target?

One of the most essential uses of water is for domestic 
consumption within households. This purpose is captured 
in target 6.1, which seeks to guarantee safe and affordable 
drinking water for drinking and hygiene purposes for all.  
Households are an important share of total water use and 
therefore represent a significant sector in achievement 
of target 6.4 on water use efficiency. “Safe” water is 
considered to be free of contaminants and is determined by 
the quality of untreated water prior to human consumption. 
The necessity of the target, for a supply of high water 
quality in the first place, is threatened by conversion of 
wetlands, forests and woodlands to agriculture around 
populated areas and water catchments. This target is 
therefore linked to the protection of the water catchment 
which is the focus of target 6.6 and the quality of water in 
target 6.3. The use of land cover change data, particularly 
in models to estimate the impact on water supplies in the 
event of widespread deforestation and land conversion, is 
a powerful way to show how drinking water becomes both 
unsafe and unaffordable in the event of a water supply 
being compromised by the conversion of natural ecosystems 
which regulate it. As EO-based observations are primary 
inputs to such models, countries can be supported towards 
achievement of target 6.1 by implementing such models 
and to plan for better baseline water quality through 
regulation of land use in water catchments. 

Current Indicator(s)

6.1.1 �Proportion of population using safely managed 
drinking water services 

Short methodological guidelines illustrated 
with EO best practice examples

Indicatior 6.1.1

Computation method

The current indicator methodology is based on household 
surveys and censuses. Although the notion of safe 
management of the water supply cannot be directly 
evaluated from EO, it can be inferred from the change 
in water quality before and after treatment, the former 
coming form EO-derived water quality maps and the 
latter from in-situ sampling. 

State-of-the-art hyperspectral remote sensing-derived 
information on water quality is generating an increasing 
choice of products relevant to this indicator. These 
range from more accurate estimates of turbidity and 
transparency measures, chlorophyll, suspended matter and 
coloured dissolved organic matter concentration, to more 
sophisticated products such as particle size distributions, 
phytoplankton functional types or distinguishing sources 
of suspended and coloured dissolved matter, estimating 
water depth and mapping types of heterogeneous 
substrates (Giardino et al., 2018). As indicator 6.6.1 
specifically requires comparison of water quality against 
international standards (faecal and chemical) from 
administrative reporting or regulatory bodies, these EO-
derived parameters will need to be compliant with such 
standards. Another EO-based approach is through the 
provision of land cover and land use change layers for 
hydrological modelling and water quality assessment, e.g. 
to estimate nitrate leaching in groundwater (Abbaspour 
et al., 2015).  

EO can also help to compute the level of access to basic 
services for each country, separately in urban and rural 
areas, though the provision of human settlement data, 
even at very high spatial resolutions, as discussed for 
indicator 11.1.1. Computing the proximity of these human 
settlements to a “safe” water supply would be a core part 
of an EO-based methodology. 
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Data sources

Data category Data sources Website

Global/regional 
datasets

GlobWetland II http://www.globwetland.org/index.php

The Global Human Settlement Layer 
(GHSL)

https://ghsl.jrc.ec.europa.eu/data.php

The Global Surface Water Explorer https://global-surface-water.appspot.com 

Software, tools and 
platforms

The Satellite-based Wetlands Observation 
Service (SWOS)

http://portal.swos-service.eu/mapviewer/detail/1.html

Operational or  
commercial services

Copernicus Global Land Service https://land.copernicus.eu/global/ 
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Limitations

EO has limited relevance for evaluating the types of basic 
drinking water sources, whether piped or sourced from a 
well, or to evaluate the level of management and service 
of the water supply.

Key messages for countries on EO contribution to the 
computation method

• �The EO methods that can support this indicator mostly 
relate to assessment of water quality and land cover / 
land use around water catchments

• �While water quality can be used to assess the status 
of water supplies before treatment, in-situ sampling 
is required during and after treatment to assess the 
“safety” of water compared to international standards 
required for this indicator

• �The planning for achievement of the target 6.1 can be 
supported by models of land use and hydrology which 
can use EO–derived information as inputs such as high 
resolution land cover. This is important to plan for water 
catchment management, ensuring that water supplies 
are as clean as possible before being supplied for 
domestic consumption
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Indicators 6.1.1
Proportion of population using safely 
managed drinking water services 

Custodian agency WHO; UNICEF

Tier II

Status of step-by-step methodology 
document on the metadata repository

Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status  of EO in indicator 
guidelines

Technical capacity required

Availability of  global EO 
data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting 
calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for 
gaps in the EO record?

Overall EO relevance

Comments to support criteria

The proposed methodology is only 
partially supported because EO can 
support monitoring and modelling of 
water quality prior to treatment thus 
in quantifying “safe” levels of water 
quality. However quantifying proportion 
of population with access to safe water 
beyond the remit of EO. 
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Target 6.3

By 2030, improve water quality by reducing pollution, 
eliminating dumping and minimizing release of hazardous 
chemicals and materials, halving the proportion of untreated 
wastewater and substantially increasing recycling and safe 
reuse globally

How can EO be used to help countries achieve the target?

Target 6.3 aims to improve ambient water quality, 
important for protecting both ecosystem health and 
human health, by eliminating, minimizing and significantly 
reducing different streams of pollution into water bodies. 
The main sources of water pollution include wastewater 
from households, commercial establishments and 
industries (point sources), as well as run-off from urban 
and agricultural land (non-point sources). Water quality 
can be measured in different ways and EO methods of 
water quality detection differ from those based on in-
situ assessment. Therefore EO support to this target will 
be limited by what can be detected based on current 
sensor technology. EO is important in ongoing, routine 
water quality monitoring of large water bodies, ideally 
in combination with in situ sampling. Yet it is feasible, 
although challenging, to use EO as a monitoring tool for 
illegal contamination of water supplies. The release of 
certain hazardous chemicals and materials, for example, 
can alter the opacity, turbidity and colour of lakes, rivers 
or other water bodies, which can be sensed from a 
multispectral or hyperspectral sensor. Armed with this 
EO-derived information on sudden declines in water 
quality, e.g. due to dumping of hazardous materials, water 
management authorities could track down polluters.  
However, the spatial resolution of the Sentinel 3 Ocean 
and Land Colour Imager (OLCI) is likely to be too coarse to 
accurately detect such events, while the Sentinel 2 Multi 
Spectral Imager (MSI), although better suited in terms of 
spatial resolution, is too sparse in terms of revisit time 
(5 days). A combination of commercial and free sensors 
(OLCI, S-2, L8, SPOT, RapidEye, IKONOS) could be an 
option for targeted, local efforts at detection of pollution 
events. EO can also support countries with the target by 
assessment of the risk of eutrophication of a country’s 
water bodies by monitoring ambient nutrient pollution in 
standing waters. 

Current Indicator(s):

6.3.1 �Proportion of wastewater safely treated 

6.3.2 �Proportion of bodies of water with good ambient 
water quality 

Potential new indicator(s) based on EO:

The number of cyanobacteria blooms in water supplies
The number of pollution events (including thermal) causing 
illegal contamination of water supplies

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 6.3.1

Computation method

Indicator 6.3.1 is calculated as the amount of waste 
treated (off-site and on-site) divided by the total amount 
produced. The breakdown of treated wastewater into 
untreated versus treated can be calculated based on 
compliance records, related to national standards. Unless 
verified otherwise, through audited compliance records, the 
waste generated will be considered untreated. However it 
may be possible where there are no compliance records to 
use EO-derived nutrient concentrations present in standing 
waterbodies as an indicator of the amount of untreated / 
poorly treated wastewater entering these systems. 
Parameters retrieved with medium to high confidence: 

• Chlorophyll-a (chl-a), 

• Colored dissolved organic matter (CDOM), 

• Secchi disk depth (SDD), 

• Turbidity, 

• Total suspended matter (TSM)

Parameters retrieved with reduced resolution: 

• �Water temperature (WT): SST can be retrieved with 
quite good accuracy (and confidence) for the coarse 
resolution (large water bodies). Higher resolution data 
can provide relative temperature patterns (e.g. Landsat).

• �Sea surface salinity (SSS): passive radar restricted to 
low spatial resolution (50km), which is not suitable for 
freshwater.

Limitations

The calculation of indicator 6.3.1 using an EO-based 
approach is limited because not all hazardous chemicals 
and materials, pollutants (such as litter) and untreated 
wastewater can be detected by multispectral or 
hyperspectral sensors. These errors of omission would 
need to be quantified before attempting an EO-based 
approach to this indicator. In coastal areas, Synthetic 
Aperture Radar (SAR) has been shown to be able to detect 
surface runoff plumes of biogenic substances associated 
with storm events (Svejkovsky & Jones, 2001), although 
the effectiveness of this method is dependent on weather 
conditions and sea surface state. However, its application in 
other aquatic environments, e.g. lakes, remains unproven.

Key messages for countries on EO contribution to the 
computation method:

• �EO-based approaches to water quality monitoring are 
in varying levels of maturity with up to 7 physical and 
biological parameters currently retrievable from low to 
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high confidence. Those parameters which do not have 
any optical (e.g. pathogens, salinity) can only be detected 
via proxy parameters (if at all) and are therefore retrieved 
with the lowest confidence and might contain the largest 
errors and need local adjustment, especially in optically 
complex waters.

• �The safe treatment of wastewater is more challenging to 
evaluate from EO since it requires a prior knowledge of 
the status of the wastewater prior to treatment in order 
to deduce if the treatment has been “safe” according 
to acceptable standards. In addition water quality 
parameters, such as the presence of pathogens, are not 
retrievable from EO

• �Standards of treatment will vary internationally, and 
establishing a wastewater quality baseline from EO 
alone is not possible, and will require compliance records 
obtained in-situ

• �Water bodies include rivers, lakes and groundwater. 
Assessing the ambient water quality of ground water 
and very small rivers or lakes (e.g. 1km surface area) is 
not possible using EO

• �Indicator 6.3.2 and 6.3.1 are interlinked because inadequate 
wastewater treatment leads to degradation in quality of 
the waters receiving the wastewater effluents.

Data sources

Data category Data sources Website

Global/regional 
datasets

The Global Surface Water Explorer https://global-surface-water.appspot.com 

Software, tools and 
platforms

Bio-physical parameters can be derived 
from Sentinel 2 and 3 using processors 
provided in the SNAP toolbox

http://step.esa.int/main/

Operational or  
commercial services

Copernicus Global Land Service https://land.copernicus.eu/global/ 

CyanoLakes http://www.cyanolakes.com/monitoring

EOMAP https://www.eomap.com/ 

Brockmann Consult https://web.brockmann-consult.de

Reference List

Svejkovsky, J. & Jones, B. (2001) ‘Satellite imagery detects coastal stormwater and sewage runoff’, Eos, 82(50), 
pp. 624–625. doi: 10.1029/01EO00357.

Indicator 6.3.2

Computation method

Indicator 6.3.2 is computed as the proportion of all water 
bodies (river, lake and groundwater bodies) classified 
as having good quality, expressed as a percentage. The 
methodology considers a body of water to have good quality 
if at least 80% of all monitoring data from all monitoring 
stations within the water body are in compliance with 
the respective targets. Mapping the global extent and 
dynamics of water bodies from space has been well proven 
(Pekel et al., 2016). The mapping of water quality has been 
demonstrated in many different applications and services. 
EO can sense the water constituents that have an influence 
on the colour of the water and thus is providing a subset 
of parameters that are measured in-situ and used for 
indicator 6.3.2. 

Parameters retrieved with medium to high confidence: 

• �Chlorophyll-a (chl-a), 

• �Colored dissolved organic matter (CDOM), 

• �Secchi disk depth (SDD), 

• �Turbidity, 

• �Total suspended matter (TSM)

Parameters retrieved with reduced resolution: 

• �Water temperature (WT): SST can be retrieved with quite 
good accuracy (and confidence) for the coarse resolution 
(large water bodies). Higher resolution data can provide 
relative temperature patterns (e.g. Landsat).

• �Sea surface salinity (SSS): passive radar restricted to 
low spatial resolution (50km), which is not suitable for 
freshwater.
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Treatment of missing values

Indicator 6.3.2: Missing values within water bodies could 
possibly be filled by spatiotemporal interpolation, e.g. 
using Data Interpolating Empirical Orthogonal Functions 
(DINEOF), an optimised gap filling procedure. However this 
risks introducing large uncertainties because bio-physical 
properties of water can vary over small distances. Another 
approach would be to use a time series of observations 
(e.g. yearly) and to calculate temporal statistics (e.g. mean, 
25th and 75th percentiles, median). This would reduce the 
likelihood of a missed observation significantly.

Sources of discrepancies

Possible discrepancies will exist between national and 
international water quality datasets, derived from EO, if the 
input data are different. In addition compliance with water 
quality standards post-treatment will vary from country 
to country as do guidelines for acceptable standards of 
nutrient pollution. 

Limitations

There is no information about ground water (or any sub-
surface water) quality from EO for indicator 6.3.2.  There 
is also a limitation in the comparison of EO-derived water 
quality products and the monitoring data collected for 
selected parameters at monitoring locations as required by 
the indicator for assessing “good” quality. This is because 
EO does not measure all water quality parameters but 
only bio-physical parameters, therefore it is not possible 
to comment on the overall water quality exclusively using 
EO data. For example, mapping ambient water quality of 
water bodies is a much more challenging prospect for two 
main reasons: (i) water quality is a combination of many 
biological, such as sedimentation, pathogens or algae, 
and physicochemical components, such as heavy metals, 

nutrient levels and dissolved minerals, etc. While EO can 
sense a limited number of these bio-physical components it 
cannot monitor chemical ones, e.g. heavy metals, nor water 
quality as a whole and (ii) spatial resolution of remote 
sensing instruments in the aquatic domain is generally 
coarse (>300m) meaning that groundwater bodies or 
small lakes or rivers are either undetectable or averaged 
out over large areas. Therefore EO is a useful source of 
supplementary information for in situ physicochemical 
water quality monitoring programmes but will never 
be a replacement for them. Seven such water quality 
parameters are directly measurable from EO, albeit with 
large uncertainties (Gholizadeh et al., 2016). 

Key messages for countries on EO contribution to the 
computation method:

• �EO-based approaches to water quality monitoring are 
in varying levels of maturity with up to 7 physical and 
biological parameters currently retrievable from low to 
high confidence. Those parameters which do not have 
any optical (e.g. pathogens, salinity) can only be detected 
via proxy parameters (if at all) and are therefore retrieved 
with the lowest confidence and might contain the largest 
errors and need local adjustment, especially in optically 
complex waters.

• �Water bodies include rivers, lakes and groundwater. 
Assessing the ambient water quality of ground water and 
very small rivers or lakes is not possible using EO. With 
Sentinel-3 water bodies less than 1 km2 is not feasible 
to map, while Sentinel-2 can monitor water bodies down 
to approximately 150 by 150 meters (but limited by the 
spectral and temporal resolution).

• �Indicator 6.3.2 and 6.3.1 are interlinked because 
inadequate wastewater treatment leads to degradation in 
quality of the waters receiving the wastewater effluents.

Data sources

Data category Data sources Website

Global/regional 
datasets

The Global Surface Water Explorer https://global-surface-water.appspot.com 

Software, tools and 
platforms

Bio-physical parameters can be derived 
from Sentinel 2 and 3 using processors 
provided in the SNAP toolbox

http://step.esa.int/main/

Operational or  
commercial services

Copernicus Global Land Service https://land.copernicus.eu/global/ 

CyanoLakes http://www.cyanolakes.com/monitoring/

EOMAP https://www.eomap.com/ 

Brockmann Consult https://web.brockmann-consult.de

DHI GRAS https://www.dhi-gras.com/solutions/water-quality/
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Target 6.3 aims for improved water 
quality, reduced pollution, eliminated 
dumping and minimized release of 
hazardous chemicals and materials 
as well as halving the proportion 
of untreated wastewater and 
substantially increasing recycling 
and safe reuse globally by 20130. 
The indicator 6.3.1 “Proportion of 
wastewater safely treated” addresses 
households as well as industry. The 
support that Earth Observation (EO) 
might give here is not in covering 
the treatment of wastewater itself. 
However, we would like to illustrate 
with two show cases what EO data 
can provide for the subject of waste 
water.  

The first shows the detection of heat 
plumes at the outflow of cooling water 
from power plants into rivers. Landsat 
thermal data have been used to show 
temperature anomalies. Under certain 
conditions, the anomalies are clearly 
visible (showcase 1), while other 
images do not show any differences 
of cooling water and river water. 
Influencing factors are differences in 
temperature of the river water and the 
cooling water, the performance of the 
power plant, direction and strength of 
(tidal) currents and wind speed. 

The second show case illustrates the 
monitoring of dredging activities in 
coastal waters (showcase 2). Human 
activities due to dredging and other 

Two show cases for utilizing EO for waste water detection  
(indicator 6.3.1) 

Figure 3: Examples of Landsat images showing anomalies in temperature caused be cooling water 
from power plants (left and right: Landsat-7, middle: Landsat-8). Shown are power plants at the 
Elbe River (left and middle) and the Weser River in Germany. (Brockmann Consult service; image 
data: Landsat ©USGS)

Figure 4: Sentinel-2 observation of dumping activities. Above: True colour image, below: derived 
parameter: absorption (humic substances), differentiating between dumped water and coastal 
waters. (Brockmann Consult service; image 

coastal engineering work in coastal 
waters have a large impact on local 
and regional water quality and 
sedimentology. Depending on the 
source, dredging material can be 
contaminated with heavy metals and 
other organic or inorganic substances. 
Different water masses are identified 
by their colour and interpreted 

accordingly. The phenomena are of 
comparably small spatial scale and 
can be mapped with spatial high-
resolution images such as Landsat-8 
or Sentinel-2. The revisit time of the 
satellites limits the potential to run 
an operational monitoring scheme but 
can complement other methods. 
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The “Integration of Earth Observation 
into the National Eutrophication 
Monitoring Programme” (EONEMP) 
Project (funded by the Water 
Research Commission, ZAR 3 Million, 
2015-2018) used earth observation 
satellite remote sensing to monitor 
cyanobacteria blooms (fig.1) and 
nutrient pollution (eutrophication, 
fig.2)  in South Africa’s large and 
medium-sized (>900 m) fresh 
waterbodies (Matthews et al., 2018). 
Using EO, it determined the status and 
severity of nutrient enrichment and 

South Africa: The Earth Observation National Eutrophication Monitoring 
Programme (indicator 6.3.2)  

Figure 6: The nutrient pollution level (trophic status) derived from 
Sentinel-3 OLCI for 2016/17 for 102 South African waterbodies

Figure 5: The cyanobacteria risk level derived from Sentinel-3 OLCI  
for 2016/17 for 102 South African waterbodies.

Figure 7: The online monitoring service 
developed by CyanoLakes during the EONEMP 
project for monitoring nutrient pollution and 
cyanobacteria health risks in waterbodies in 
near real-time.
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Figure 66 Cyanobacteria risk level for 2016/17 estimated by OLCI. 

3.5.2 Eutrophication 

The trophic status of the 102 waterbodies during 2016/17 were as follows (Figure 67 and 

Figure 68): 

l 35% of the total area was hypertrophic 

l 27% of the total area was eutrophic 

l 26% of the total area was oligotrophic 

l 40 of the 102 waterbodies were on average hypertrophic 

l seven of the 102 waterbodies were on average eutrophic  

l 41 of the 102 waterbodies were on average oligotrophic  

Roughly two-thirds of the total area of the 102 waterbodies were either eutrophic or 

hypertrophic (chl-a greater than 30 mg m-3). Roughly one quarter of the total area was 

oligotrophic, meaning it had low algal and cyanobacteria biomass. The five waterbodies worst 

affected by eutrophication as measured by the median chl-a value during 2016/17 (in order) 

were Roodeplaat, Floriskraal, Kalkfontein, Klipvoor and Krugersdrift Dams. Those with the 

largest area of eutrophic and hypertrophic water (Table 39) were Gariep, Vaal, Bloemhof, 

Vanderkloof and Darlington Dams.  

 

Cyanobacteria risk level

Very high

High

Medium

Low

100 0 100 200 km

Cyanobacteria risk level

(2016/17)
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Table 39 Waterbodies worst affected by eutrophication as calculated by the area of eutrophic and hypertrophic 
waters for 2016/17. 

Name   Area (km2)  Name   Area (km2)  

Gariep  302.4  Kalkfontein  32.7  
Vaal  206.4  Erfenis  29.5  
Bloemhof  134.7  Theewaterskloof  25.3  
Vanderkloof  69.9  Allemanskraal  24.3  
Darlington  34.4  Grootdraai  22.0  

 

When considering the spatial distribution of eutrophication (Figure 69) the majority of 

hypertrophic waterbodies were situated on the Highveld, in the Free State, Gauteng and 

North-West provinces. The majority of oligotrophic waterbodies were situated on the eastern 

half of South Africa, in the Kwa-Zulu Natal and Mpumalanga provinces. The spatial distribution 

of median chl-a values (Figure 70) had similar patterns, with a grouping of high-chl-a dams 

north of Gauteng, the main drainage basin from the Gauteng metropole, and in the Vaal and 

Orange catchments to the south. The spatial pattern of median chl-a from cyanobacteria 

blooms was very similar, suggesting a strong correlation between trophic status and the 

occurrence of cyanobacteria blooms (Figure 70). 

 

Figure 69 Trophic status for 102 waterbodies during 2016/17. 
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the health risks from cyanobacteria 
blooms, for both the previous decade 
(2002 to 2012) and for the year 
2016/17. A prototype online near 
real-time monitoring service website 
was developed (fig.3) through which 
chlorophyll-a and associated data 
were delivered to, and integrated 
into, the Water Management System 
database of the national governmental 
Department of Water and Sanitation 
to supplement in situ monitoring and 
fill information gaps. The satellite 
information was ultimately used 

for reporting to Parliament on the 
nutrient pollution levels and risks 
from cyanobacteria in South Africa’s 
water supply reservoirs. The project 
demonstrates how EO can produce 
invaluable environmental records for 
reporting on and analysing pollution of 
standing waters by shedding light on 
the impacts from poorly or untreated 
wastewater which is known to be a 
significant problem in South Africa’s 
infrastructure.
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Target 6.4

By 2030, substantially increase water-use efficiency 
across all sectors and ensure sustainable withdrawals 
and supply of freshwater to address water scarcity and 
substantially reduce the number of people suffering from 
water scarcity

How can EO be used to help countries achieve the target?

Target 6.4 addresses water scarcity, aiming to ensure 
there is sufficient water for the population, the economy 
and the environment by increasing water-use efficiency 
across all sectors of society. Finding a balance between 
demands for water from environmental requirements and 
human demand is essential to maintaining ecosystem 
health and resilience. An imbalance due to unsustainable 
levels of demand can result in water stress with 
negative effects on economic development, increasing 
competition and potential conflict among users. This 
requires effective supply and demand management 
policies and an increase in water-use efficiency. 

EO has an obvious – if yet unrecognised – contribution 
to the monitoring of the target in quantifying surface 
water changes over time, water consumed by key water-
user sector such as agriculture, as well as soil moisture 
deficits. Therefore EO can help countries achieve 
water use efficiency gain targets by identify areas of 
current and future surface water deficits, e.g. through 
hydrological models, based on EO parameters such as 
evapotranspiration, soil moisture and surface water, 
and by modelling supply and demand across sectors 
based on land use change. In agricultural areas, EO can 
monitor how effectively water uptake by vegetation 
is translated into crop yield, using a metric that is 
referred to as agriculture water productivity (yield/m³ 
of water consumed). This can ultimately help countries 
to plan for water deficits in advance of stresses such 
as climate extremes or when demand is excessive. The 
number of people suffering from or potentially affected 
by such water deficits could then be calculated based 
on demographic statistics A range of options exists for 
coping with water scarcity that address the supply side or 
the demand side or a combination of the two, depending 
on the bio-physical and socio-economic context.

Current Indicator(s)

6.4.1 �Change in water-use efficiency over time

6.4.2 �Level of water stress: freshwater withdrawal as a 
proportion of available freshwater resources

Potential new indicator(s) based on EO:

Proportion of the population suffering from water scarcity
Water productivity

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 6.4.1

Computation method

Indicator 6.4.1 defines water use efficiency as the 
volume of water used divided by the value added of a 
given major sector. Traditionally the sectors considered 
are agriculture; forestry; fishing and MIMEC (mining and 
quarrying; manufacturing; electricity, gas, steam and air 
conditioning supply; construction) and services (i.e. the 
public distribution network). Efficiency is defined as the 
change in the ratio of the value added (by the sector) to the 
volume of water use, over time. The sectoral approach is 
designed to identify economic sectors where value added 
is small relative to water use at the national scale and 
therefore where gains in water use efficiency can be made 
over time. Data on volumes of used and distributed water 
are collected at country level from the municipal supply 
utilities records and reported in questionnaires. Services 
value added is obtained from national statistics, deflated 
to the baseline year. There is currently no mention of EO in 
the indicator guidelines. 

EO-based methods of measuring water use efficiency for 
this indicator include the concepts of water productivity 
for agriculture and rain use efficiency for environmental 
applications. Both concepts are based on production 
of vegetation in relation to water usage. Net Primary 
Production (NPP) is the total carbon fixed by photosynthesis 
during a period and is the rate of organic biomass growth or 
accumulation by plants. EO NPP models can be divided into 
models based on empiric relationships with the Normalised 
Difference Vegetation Index, radar backscatter or another 
simple satellite-derived parameter, and in physical models 
using the absorbed photosynthetically active radiation 
(fPAR). Methods based on EO derived fPAR have been 
successfully used to measure biomass production across 
scales, climates, and ecosystems.

Timeseries of optical and radar EO images can be very 
useful for separating the landscape into land use and land 
cover classes focused specifically on water use. Examples 
of such classes are irrigated and non-irrigated agriculture 
or individual crop types. Such maps can be produced at 
high enough accuracy (up to 10 m when using open data) 
to capture individual fields or linear landscape features 
such as riparian zones.

EO is increasingly being used to compute actual 
evapotranspiration, thereby allowing for a direct estimation 
of the amount of water consumed in each spatial unit (pixel). 
When that information is associated to land use maps 
(mostly EO-based), it becomes possible to calculate water 
consumption by land use class (e.g. irrigated agriculture, 
rainfed agriculture, water bodies, different crops etc.)
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This concept can be applied to water use efficiency in the 
agricultural sector, e.g. where EO-based approaches have 
been used to estimate crop water productivity based on 
water uptake (Bastiaanssen and Steduto 2017). Recently, 
FAO, IHE-Delft, IWMI,  and other partners have been 
joining forces to develop an open-access database that 
monitors water productivity in Africa and the Near East 
(WaPOR) using satellite derived information (FAO, 2018).

Other water using sectors, like industry, energy, or 
domestic use, have different impacts on water resources 
(like deteriorating water quality, or altering its temporal 
availability) that are not captured through evapotranspiration 
and are not easily detectable through EO.  

Sources of discrepancies

When using EO for the total freshwater withdrawn (TWW) 
component (explained further in the section on 6.4.2), there 
would not be discrepancies expected as optical image inputs 
(Leaf Area Index, the crop height, vegetation indices, surface 
albedo, and land surface temperature) are usually standard and 
are required for most ET models which also use thermal data.  

Limitations

For TWW the spatial resolution of satellite thermal images 
is not commensurate with the size of small agricultural 
fields. Since the pixels contain broad mixtures and 
densities of crops, the land surface temperature signals are 
mixed and the evapotranspiration retrievals are difficult to 
interpret. For example, the pixel size ranges from 100 m for 
the thermal sensor on board Landsat 8 to 375m for VIIRS 
to 1000 m for MODIS-AQUA, MODIS-TERRA and Sentinel-3 
(Allen et al. 2011). This might not pose a problem for 
national reporting on the TWW component of indicator 
6.4.2, but might pose a challenge for disaggregation by 
hydrological units (river basins, aquifers), with the caveat 
that if a thermal-based model is being used, low spatial 
resolutions, e.g. the 1km of the Sentinel-3 SLSTR, might 
be just adequate for river basins but is not enough for 
individual fields. Various techniques exist for improving the 
spatial resolution of thermal data using high-resolution 
optical observations. However, caution should be exercised 
when using such fused data for detailed field-scale analysis.

For the total renewable freshwater resources (TRWR), 
only wetlands reservoirs and similar water bodies are 
quantifiable from EO but it’s not clear how they are counted 
in the internal renewable water resource. 

There also imitations on the accuracy of model inputs 
derived from EO such as land use and meteorological data 
such as rainfall  (Karimi & Bastiaanssen 2015). 

Finally, as the indicator also depends on the economic 
value of the output, and hence on fluctuations in prices, the 
monetary value component cannot be estimated from EO. 

Key messages for countries on EO contribution to the 
computation method:

• �These indicators are based on quantifying water 
consumption across different sectors - domestic, 
industrial, services and agriculture and comparing it 
to a baseline or background water storage in order to 
ascertain water use efficiency 

• �There are both experimental and robust applications of 
EO in the computational methodologies. For example 
the estimation of ground water storage from microwave 
remote sensing is in its infancy compared to surface water 
extent and depth mapping based on optical sensors and 
scanning radiometry

• �EO technologies to quantify water use efficiency 
of vegetation, both natural and agricultural, by 
assessing the vegetation productivity – NPP, biomass 
production – versus the water consumption – actual 
evapotranspiration- have matured in the scientific 
community and found their way to commercial and open 
applications.

• �Therefore it is easier to quantify water use over time for 
certain sectors, e.g. agriculture, than others, e.g. domestic 
use and for evaluating surface parts of the freshwater 
budget, e.g. reservoirs and lakes

• �Methods applied to rain water use efficiency in 
meteorology are now employed for water use efficiency in 
agriculture and are based on evapotranspiration models 
where a range of EO parameters are used

• �Spatial resolution and accuracy of retrieval will vary for 
certain optical and thermal properties which should be 
considered for national circumstances

• �EO technology offer the opportunity to change not 
only the way but also what we measure. For example 
traditional methodologies only capture water extracted 
for irrigation, while satellite earth observation can also 
measure water usage by natural vegetation, forest 
plantations, and rainfed agriculture. 

• �The use of EO for calculation of the indicators in the 
agricultural sector has a number of advantages compared 
to the currently available dataset (Graveland et al., 2016):

• �Agricultural water use derived from remote sensing, 
which is actual ET, can be made for each country 
relatively easily;

• �A number of AET data sources are already publicly 
available;

• �Historical archives make it possible to assess the 
trend in water use efficiency, even when no prior 
information has been collected;
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Data sources

Data category Data sources Website

Global/regional 
datasets

ESA CCI Land Cover https://climate.esa.int/en/projects/land-cover

Global Map of Irrigation Areas (GMIA) 
of FAO

http://www.fao.org/nr/water/aquastat/irrigationmap/
index10.stm

Global Irrigated Area Map (GIAM) of 
IWMI

http://waterdata.iwmi.org/Applications/GIAM2000

The FAO portal to monitor Water 
Productivity through Open access of 
Remotely sensed derived data (WaPOR)

https://wapor.apps.fao.org

Dry matter productivity (yield) and wa-
ter bodies map from Copernicus Land 
Services

https://land.copernicus.eu/global 

Operational or  
commercial services

IrriSAT https://irrisat-cloud.appspot.com

FruitLook (for South Africa) https://www.fruitlook.co.za
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• �The methodology can be consistently implemented 
in each country, making cross-country comparison for 
AET possible; and

• �It has a high level of spatial and temporal resolution, 
which will enable more targeted policies to improve 
agricultural water use efficiency.
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Like in many other countries, South 
Africa is facing a growing demand 
for water while at the same time 
water availability is under threat from 
climate change. Recently South Africa 
experienced one of the worst droughts 
in centuries with a strong impact on 
urban and agricultural communities. 
In Western Cape Province, the fruit 
and wine industry represents almost 
a third of the province’s exports but 
is also a large consumer of irrigation 
water. Optimizing production while 
minimizing the ecological impact of 
the sector will have both economic 
and environmental benefits and calls 
for innovative solutions.

FruitLook (http://www.FruitLook.co.za) 
is an online platform for fruit and 
grape farmers powered by satellite 
Earth Observation data, developed 
by the Dutch company eLEAF and 
supported by the Department of 
Agriculture: Western Cape. It provides 
farmers with weekly updates on 
their crop’s water and growth status. 
FruitLook has been available since 
2010 and services an area of 9 million 
ha, including 200,000 ha of fruit crops.
 
FruitLook helps farmers to make 
better management decisions which 
are reflected in more efficient and 
productive water usage (Figure 8). 
Farmers use FruitLook to monitor 
crop development, detect and locate 
growth problems, evaluate and 
improve water management, and 

EO for improving water-use efficiency in the agricultural sector in South 
Africa for indicator 6.4.1
FruitLook – supporting farmers to increase water use efficiency 
 

Figure 8: Fruitlook helps farmers to achieve water use efficiency in the agricultural 
sector using EO technology

generally optimize use of resources. 
And with success: the water use 
efficiency of FruitLook users has 
already increased by between 10% 
and 30%.

Earth Observation technologies help 
farmers to address the challenge of 
producing more with less input, in 
response to a growing population, 

climate change, increased competition 
for water, and rising input costs. The 
PiMapping® technology behind the 
FruitLook application is applicable on 
any land surface, and the concept can 
be expanded to other countries and 
crops to assist farmers all over the 
world in attaining more sustainable, 
efficient and resilient water resource 
management.
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Achieving food security in the future 
while using water resources in a 
sustainable manner will be a major 
challenge in the face of climate 
change. Agriculture is a key water 
user and is one of the key sectors for 
computing indicator 6.4.1. In order 
to monitor the performance of water 
use in agriculture, FAO developed 
a publicly accessible near real time 
database using EO data.

The FAO portal to monitor Water 
Productivity through open access 
of remotely sensed derived data 
(WaPOR) can be used to report on 
agricultural water productivity over 
Africa and the Near East from 2009 
to present. It provides open access 
(through its portal and dedicated 
Application Programming Interfaces) 
to various spatial data layers 
related to land and water use. It 
allows for direct data queries, time 
series analyses, area statistics and 
data download of key variables to 
estimate land and water productivity 
gaps in irrigated and rainfed 
agriculture, monitor trends of water 
use in irrigated areas and assess the 
influence of droughts on agricultural 
production. 

Land productivity is assessed in terms 
of production (biomass production or 
yield) in kg/ha while water used for 
agricultural production is expressed 
in actual evapotranspiration. When 
combined these datasets result in 
the water productivity: production 
per volume of water in kg/m3. Data 
is available at three different spatial 
resolutions (Figure 9) and generated 
by the FRAME consortium members, 
eLEAF and VITO, with financial 
support from the Dutch Ministry of 
Foreign Affairs.

WaPOR can help countries to improve 
the understanding of trends in 
water productivity and contributing 

Open access water productivity data for Africa and the Near East for 
indicator 6.4.1
 

Figure 9: Water Productivity through open access of remotely sensed derived data (WaPOR) is a 
new tool developed by the FAO to report on agricultural water productivity over Africa and the 
Near East from 2009 to present

factors, provides evidence on 
risks and their impact, advocates 
management with water accounting, 
defines strategies and prioritization, 
and plans interventions more 
effectively. Moreover, WaPOR is a 
powerful instrument to help in the 
computation of indicator 6.4.1 and 
more broadly to achieve and measure 
progress towards SDG6. 
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Indicator 6.4.2

Computation method

Indicator 6.4.2 is computed as the total freshwater 
withdrawn (TWW) divided by the difference between the 
total renewable freshwater resources (TRWR) and the 
environmental water requirements (Env.), multiplied by 100. 
To compute this indicator by sector (as is required), data 
for each of the relevant sectors (agriculture, municipalities 
and industry) are needed. Like 6.4.1, there is currently no 
mention of EO in the indicator guidelines.

However, EO data can be used to quantify both the TWW 
and TRWR components of the indicator. For TWW, most 
water withdrawals are for agricultural irrigation. The 
amount of water used by irrigation can be estimated/
modelled as incremental evapotranspiration, using EO data 
on actual evapotranspiration (see computational method 
for 6.4.1) in irrigated agriculture as compared to the 
surrounding rainfed land, and rainfall. 

It is important to realise EO data provides a new way to 
measure water use, which goes beyond the traditional 
ways of measuring water withdrawals by sectors. Through 
actual evapotranspiration modelling it is now possible to 
determine water usage by not only irrigated agriculture, but 
also by rainfed agriculture, forest, and natural vegetation.
Secondly the TRWR is expressed as the sum of internal and 
external renewable water resources. Internal renewable 
water resources are defined as the long-term average 
annual flow of rivers and recharge of groundwater for a 
given country generated from endogenous precipitation. 
Precipitation is another parameter that can largely benefit 
from improved EO-based techniques. External renewable 
water resources refer to the flows of water entering the 
country. Groundwater has been inferred from EO through 
gravimetric measurements, however this is not yet a robust 
approach (Chen et al., 2016) and also limited in terms of 
detail. Arguably, reservoirs are a component of the internal 
renewable water resource. Water reservoirs and their 
evolution over time can be mapped from EO, providing data 
on water surface area, water surface height and volume. 
The available time period and update frequency depends 
on the satellite sensors used, but using only Landsat 
data one can have monthly updates at a global scale for 
reservoirs larger than one hectare. Optical sensors such 
as Landsat and SPOT can easily identify reservoirs of size 
down to one hectare. In cloudy areas SAR observations 
can fill the gaps or provide the complete reservoir map 
with comparable levels of accuracy to optical data, except 
when wind and other weather conditions distort the water 
surface (Huilin, 2015).  

In summary, EO can contribute to quantifying the TWW 
and TRWR components of the indicator – in the former 
case only for the agricultural sector (Ferrant et al., 2017), 
and in the latter case only for reservoirs and other open 

water bodies. Moreover, EO can be very useful for the 
spatial disaggregation of the indicator at sub-national/
basin level
Another way of estimating the level of water stress is 
looking at the transpiration deficit, which is based on the 
ratio of actual water consumption and the potential water 
consumption.

Treatment of missing values

For indicator 6.4.2, An EO-based approach will contain missing 
values due to cloud as the approaches proposed are based on 
optical or thermal data. Gaps in observed Evapotranspiration 
(ET) are usually interpolated using meteorological data. Also 
work is being done on all-weather ET estimation using 
microwave temperature (Holmes et al., 2018).

Key messages for countries on EO contribution to the 
computation method:

• �These indicators (6.4.1 and 6.4.2)  are based on quantifying 
water consumption across different sectors - domestic, 
industrial, services and agriculture and comparing it to a 
baseline or withdrawal (water stress) 

• �There are both experimental and robust applications of 
EO in the computational methodologies. For example the 
estimation of ground water storage from microwave remote 
sensing is in its infancy compared to surface water extent 
and depth mapping based on optical sensors and scanning 
radiometry

• �EO technologies to quantify water use efficiency of 
vegetation, both natural and agricultural, by assessing the 
vegetation productivity – NPP, biomass production – versus 
the water consumption – actual evapotranspiration - have 
matured in the scientific community and found their way to 
commercial and open applications.

• �Therefore it is easier to quantify water use over time for 
certain sectors, e.g. agriculture, than others, e.g. domestic 
use and for evaluating surface parts of the freshwater 
budget, e.g. reservoirs and lakes, than underground, e.g. 
aquifers

• �Methods applied to rain water use efficiency in meteorology 
are now employed for water use efficiency in agriculture 
and are based on evapotranspiration models where a range 
of EO parameters are used

• �Spatial resolution and accuracy of retrieval will vary for 
certain optical and thermal properties which should be 
considered for national circumstances

• �EO technology offer the opportunity to change not only the 
way but also what we measure. For example traditional 
methodologies only capture water extracted for irrigation, 
while satellite earth observation can also measure water 
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usage by natural vegetation, forest plantations, and rainfed 
agriculture. 

• �The use of EO for calculation of the indicators in the 
agricultural sector has a number of advantages compared 
to the currently available dataset (Graveland et al., 2016):

• �Agricultural water use derived from remote sensing, which 
is actual ET, can be made for each country relatively easily;

• �A number of AET data sources are already publicly available;

• �Historical archives make it possible to assess the trend in 
water use efficiency, even when no prior information has 
been collected;

• �The methodology can be consistently implemented in each 
country, making cross-country comparison for AET possible; 
and

• �It has a high level of spatial and temporal resolution, which 
will enable more targeted policies to improve agricultural 
water use efficiency.

Data sources

Data category Data sources Website

Global/regional 
datasets

ESA CCI Land Cover https://climate.esa.int/en/projects/land-cover

Global Map of Irrigation Areas (GMIA) of FAO
http://www.fao.org/nr/water/aquastat/irrigationmap/
index10.stm

Global Irrigated Area Map (GIAM) of IWMI http://waterdata.iwmi.org/Applications/GIAM2000

The FAO portal to monitor Water 
Productivity through Open access of 
Remotely sensed derived data (WaPOR)

https://wapor.apps.fao.org

Dry matter productivity (yield) and wa-
ter bodies map from Copernicus Land 
Services

https://land.copernicus.eu/global 

Operational or  
commercial services

IrriSAT https://irrisat-cloud.appspot.com

FruitLook (for South Africa) https://www.fruitlook.co.za
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Indicators 6.4.1
Change in water-use 
efficiency over time

6.4.1
Level of water stress: freshwater 
withdrawal as a proportion of available 
freshwater resources

Custodian agency FAO

Tier I I

Status of step-by-step methodology 
document on the metadata repository

Published Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status  of EO in indicator 
guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting 
calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for 
gaps in the EO record?

Overall EO relevance

Comments to support criteria

EO can support 
estimations of water use 
efficiency in agriculture in 
terms of yield gained per 
unit of water added.

EO-based mapping of terrestrial ecosystems 
that can monitor freshwater resources, e.g. 
wetland extent. Most of water withdrawals 
are for agricultural irrigation, whose extent 
can be estimated based on EO data.
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Target 6.6

By 2020, protect and restore water-related ecosystems, 
including mountains, forests, wetlands, rivers, aquifers and 
lakes

How can EO be used to help countries achieve the target?

For the purposes of this target, water-related ecosystems 
are grouped into five categories: 1) vegetated wetlands, 2) 
rivers and estuaries, 3) lakes, 4) aquifers, and 5) artificial 
waterbodies. Water-related ecosystems contain and 
maintain the global stock of freshwater, from which water 
related services flow to society. They are characterised 
by high biodiversity and because they are carbon-rich, 
are important for climate change mitigation. In terms 
of services they provide micro climate regulation, e.g. 
minimising the negative impacts of urban heat islands. 
They capture and store water and maintain water quality 
since they can decompose and/or absorb water pollutants. 
In addition they are important for fisheries and provision of 
construction materials. Therefore this target promotes the 
sustainable management of water catchment ecosystems 
such as wetlands, rivers, lakes, reservoirs and groundwater, 
as well as water-related forests and mountains, which 
are crucial for provision of these services. The ecosystem 
based approach is important for flood regulation, public 
water supply and access to clean drinking water. In this 
respect, target 6.6 is the starting point for other water-
related targets as it aims to protect water at source.  As 
water-related ecosystems are often highly complex and 
very diverse, management is challenging and monitoring 
is expensive and time consuming. Therefore EO provides 
a standardised monitoring approach which can capture 
the multiple dimensions of change from hydrological to 
biophysical processes. However as this target is focused on 
the watershed EO at high spatial resolution, e.g. Landsat 
and Sentinel-1/-2 (10-30m) should be acquired. For 
example, high resolution land cover change can be used 
to track changes in water-related ecosystems, to assess 
the success of catchment-wide restoration efforts and the 
effectiveness of protection measures or to identify threats 
to sensitive habitat. Other EO products such as the extent 
of water bodies and their temporal dynamics, as well as 
digital terrain models, are inputs to models that assess the 
availability of surface and ground water.  

Current Indicator(s)

6.6.1 �Change in the extent of water-related ecosystems 
over time

Potential new indicators based on EO:

Proportion of land restored to wetland

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 6.6.1

Computation method

The Indicator 6.6.1 is composed of 5 sub-indicators:
Sub-Indicator 1 – spatial extent dynamics of water-related 
ecosystems
Sub-Indicator 2 – water quality of lakes and artificial water 
bodies
Sub-Indicator 3 – quantity of water (discharge) in rivers 
and estuaries
Sub-Indicator 4 – water quality imported from SDG 
indicator 6.3.2
Sub-Indicator 5 – quantity of groundwater within aquifers

As this indicator is composed of sub-indicators, for global 
reporting on percentage change of Indicator 6.6.1, each 
sub-indicator must be aggregated up to form a single score 
for each country. Scores of each sub-indicator should also 
be kept. 

Currently the sub-indicator 1 (spatial extent dynamics) 
methodology does employ EO but is based on a two-tier 
approach – a global approach to map the four major global 
datasets on the spatial extent of water related ecosystems: 
spatial extent of lakes, rivers, and estuaries; spatial extent 
of artificial waterbodies; spatial extent of vegetated 
wetlands.; and (in the tropics/sub-tropics) spatial extent of 
mangroves. The second tier consists of a national approach 
to validate these global layers. Once validated, the global 
datasets are used to calculate percentage change of spatial 
extent over time, using a 2001-2005 baseline period. 
Subsequent five year averages are compared to this 
baseline.

Three EO-derived products are important for calculating 
sub-indicator 1 - land use and land cover (LULC), open 
water and the effective wetland area (in order to demarcate 
the boundaries of infrequently flooded wetlands as well 
as the permanently flooded). The Global Surface Water 
Explorer (GSWE) is now the official product for calculating 
indicator 6.6.1 (Pekel et al., 2016). The GSWE documents 
the spatiotemporal dynamics of the world’s open water 
from the long time series of the Landsat satellite series, 
spanning the 1984-2015 era. The GSWE contains unique 
data on water seasonality (documenting the intra-annual 
persistence) and water recurrence (documenting the inter-
annual variability of surface water presence). However 
ecological definitions of wetland are complex to map from 
an EO point of view and usually require accurate in situ 
information and other ancillary data. For example, the 
Copernicus high resolution layer “combined Water and 
Wetness product” scheme contains only four classes: (1) 
permanent water, (2) temporary water, (3) permanent 
wetness and (4) temporary wetness. In addition to the 



Compendium of guidance on Earth Observation to support the targets and indicators of the Sustainable Development Goals 68

COMPENDIUM OF EO CONTRIBUTION TO THE SDG TARGETS AND INDICATORS TARGET 6.6

physical properties of the water surface, it is necessary to 
map the different types of wetland ecosystems using a 
dedicated LULC product. The computational method suggests 
mapping 6 types of vegetated Wetlands –swamps, fens, 
peatlands, marshes, paddies, and mangroves which aligns 
with the Ramsar Convention on Wetlands definition of 
wetlands (Robelo et al., 2018).

Although useful for the above applications, optical data has 
serious limitations in detecting vegetated wetlands, where 
long wavelength-band (L-band) Synthetic Aperture Radar 
(SAR) has the unique capability to detect standing water 
(inundation extent) under a closed forest canopy, e.g. in 
mangroves (Bunting et al., 2018). Mapping of inundation 
extent and dynamics in forested wetlands by L-band SAR 
has been demonstrated over semi-continental scales e.g. in 
the Amazon and Congo river basins (Chapman et al., 2015). 
In order to capture the full extent of vegetated wetlands, 
a multi-annual time series of L-band radar (or in the case 
of open water, optical imagery) should be constructed then 
re-evaluated through a moving time window (e.g. 2015-
2017, 2016-2018, 2017-2019, etc.) in order to avoid missing 
“dormant” wetlands which do not recur on an annual basis. 
In order to conduct a wetland inventory with EO, it is 
necessary to delineate a zone for wetland potential. Potential 
wetland is derived from a number of EO-derived parameters 
for topography, hydrology, climate and soil characteristics 
(e.g. soil moisture). This layer includes all open areas 
(without a dense vegetation cover) that are permanently 
or temporarily flooded and could also include ecosystems 
that are converted wetlands, like agricultural lands or urban 
zones (e.g. former wetlands that are converted by human 
activities). Areas with high potential wetland value could be 
considered as the functional area of the effective wetlands, 
however this still needs to be demonstrated.

For sub-Indicator 2, the EO methods are focused on 
chlorophyll a (Chl) and total suspended solids (TSS) within 
lakes and artificial water bodies globally, as these parameters 
are retrievable with higher confidence from EO. Historically, 
water quality products were derived from Envisat MERIS (no 
longer operational), MODIS and VIIRS data but Sentinel-3 
Ocean and Land Colour Imager (OLCI) provides similar 
capacity for quantitative measures of chlorophyll a, suspended 
sediments and coloured dissolved organic matter (CDOM) 
(ESA, 2017). Sentinel 2 and Landsat 8 can also be used 
to retrieve water quality parameters at higher resolutions. 
However, these sensors are limited by the spectral bands 
available - they don’t have all the spectral bands available to 
make an accurate retrieval. This is in comparison to MERIS, 
Sentinel-3 OLCI, MODIS and VIIRS, which are set at 300m 
spatial resolution. EO-derived water quality parameters can 
be used as indicators of eutrophication, physical disturbance 
and contamination in the water body.

For sub-Indicator 3, there are two EO based approaches to 
streamflow measurement by EO – direct estimation and 
modelling (Tan et al., 2014). Estimation consists of mapping 

inundation directly by classification of satellite imagery and/
or water level estimation by satellite altimetry. A study 
combining both satellite altimetry and MODIS imagery 
was able to estimate river discharges at the basin scale 
for rivers greater than 800m wide (Sichangi et al., 2016). 
Streamflow modelling involves a range of EO data including 
snow cover and evapotranspiration estimates to understand 
the potential capacity of stream flow given a range of terrain 
and meteorological parameters. River discharge can also be 
modelled with a hydrodynamic model calibrated with all 
available in-situ observations and water-surface elevation 
observations from radar altimetry. Then the calibrated model 
can be used to predict discharge, as has been done for the 
Ogooué River in Africa using multi-mission EO data (Kittel 
et al., 2018). Although the sub-Indicator 3 methodology 
proposes in-situ measurements by gauging stations or 
discharge meters, the EO-based approaches described above, 
based on direct observations and modelling, have potential 
for areas were no in situ data exists.  

As water is such a complex medium to observe from 
space, the choice of satellite imagery is key to the success 
of EO in measuring the sub-indicators. Therefore the 
complementarity of SAR and optical measurements should 
be considered as both have advantageous properties 
for water detection. In the optical domain Landsat and 
Sentinel-2 provide adequate spectral range and resolution 
to characterise surface water and its dynamics (especially 
Sentinel -2 with a more regular revisit time than Landsat 
8). Sentinel-1 is also relevant to detect surface water 
dynamics. It provides  high temporal resolution (six days 
for Sentinel-1A and -1B at the Equator), high spatial 
resolution, cloud-penetrating qualities, illumination 
independence and wide swath allowing for a much-needed 
operational change detection system (Muro et al., 2016). 
Other comparable radar datasets are the (L-band) Synthetic 
Aperture Radar (SAR) satellite series operated by JAXA: 
JERS-1 SAR (1992-1998), ALOS PALSAR (2006-2011) and 
ALOS-2 PALSAR-2 (2014-present) which are provided 
by JAXA as annual 25m global mosaics. The sensitivity 
of the long wavelength L-band to vegetation structure is 
especially useful in detecting densely vegetated wetlands 
as show in boreal zones (Whitcomb et al., 2009) and for 
mapping of inundation extent and dynamics in tropical 
wetlands (Rosenqvist and Birkett, 2002; Hess et al., 2003). 
All these data are cost-free. For water quality, the main 
source of data is the OLCI on board the Sentinel-3 satellite 
and Terra/Aqua MODIS, and the Visible Infrared Imaging 
Radiometer Suite (VIIRS) weather monitoring system. For 
freely available global satellite precipitation data sets, see 
table 1 in Tan et al. (2014). Finally, radar altimetry has the 
potential to determine changes (through the measurements 
of water levels) in water volumes both in lakes and rivers.

Treatment of missing values

Gaps in EO time series can be filled by alternative climatic 
proxies such as inundation regime recorded by flood gauges 
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or precipitation levels from meteorological stations. However 
point measurements are sparse and might represent local 
precipitation events. Gap filling should always be used with 
caution and – should be based on evidential reasoning 
approaches.

Sources of discrepancies

Discrepancies could be introduced for all sub-indicators 
where EO data are merged over multi-annual baselines, e.g. 
where there are five year baseline reference periods. Within 
this period it is feasible that a country would merge satellite 
imagery with different spatial and temporal characteristics, 
especially in order to fill gaps due to cloud and other areas 
without adequate EO coverage. It should also be noted that 
satellite coverage and technology has evolved over time. We 
therefore cannot be as accurate for the baseline 2001-2005, 
as we will be for 2016-2020. 

Limitations

For sub-indicator 1, the application of EO to mapping wetland 
extent in areas of dense vegetation cover is limited. This 
is because optical sensors and short wavelength (C-band, 
X-band) radar sensors are constrained to measuring the 
top of the vegetation canopy. Long wavelength radar 
sensors (L-band) can penetrate the canopy to the water 
surface in most conditions, although data availability can 
be a limitation outside the tropics/sub-tropics where most 
L-band SAR time-series data have been collected to date. 
This poses challenge because of the reporting frequency of 
the indicator on a 5 year basis without any overlap.

In addition, SAR alone would not allow to accurately map 
open water, e.g. the occurrence of the water. Even if all 
the observations are considered valid, for water it’s not 
necessarily the case. For example, the presence of surface 
waves on a lake can strongly increase radar backscattering 
– expressed as a distortion of the imagery. This would be a 
significant source of omission error and therefore a source of 
underestimation of the water occurrence. The 2001–2015 
dataset GSWE dataset includes freshwater and saltwater 
rivers, lakes and estuaries greater than 30 m2, however 
this will be reduced to at least 20 m2 for Sentinel-1 and 
Sentinel-2 (possibly even 10 m2, at the native resolution of 
Sentinel-2’s visible and near infrared bands). Yet, the vast 
majority of rivers, however, are not captured as they are too 
narrow to detect or are blocked by the vegetation canopy. 

For sub-indicator 2, the main limitation is that the global 
EO-based approach for water quality proposed is limited to 
parameters measurable by satellite remote sensing. These 
parameters are therefore biophysical in nature, properties 
that alter the water colour. However there are many water 
quality factors such as heavy metals and pathogens that 
have no impact on water colour and are not measurable 
from EO. In order to overcome this limitation, the more 
comprehensive water quality indicator (6.3.2), that must 
adhere to standards, is imported as sub-Indicator 4.

For sub-indicator 3, precipitation products, for example from 
the Tropical Rainfall Measuring Mission radar data, comprise 
high spatial variability problems that lead to uncertainties 
in model estimates (Strauch et al., 2012). TRMM Is also 
limited with respect to the spatial coverage.  However, there 
is a multitude of other satellite based precipitation datasets 
available, e.g. GPCP, CMAP, etc.

Key messages for countries on EO contribution to the 
computation method:

• �Indicator 6.6.1 has 5 sub-indicators but the first two 
are the most appropriate for an EO-based methodology 
(with the exception of sub-indicator 4 on water quality 
imported from indicator 6.3.2)

• �Sub-indicator 1 requires extent of water related 
ecosystems information in 3 categories: open and natural 
surface waters, artificial water bodies and vegetated 
wetlands (this is further divided into different vegetated 
wetland types)

• �Optical EO can distinguish open surface water with 
higher accuracy than vegetated wetland but is challenged 
to separate artificial (e.g. reservoir) from natural water 
bodies (e.g. glacial lake). In order to separate these 
categories, the methodology would need ancillary data, 
e.g. on water infrastructure or land use

• �Vegetated wetlands present complicated surfaces for 
EO sensors as the water underneath the canopy is not 
possible to detect by optical methods especially where 
water is seasonal and is only sometimes present. SAR 
presents a more useful tool, especially L-band SAR, which 
can in most cases penetrate vegetation canopies to the 
water surface underneath, e.g. in forested wetlands. An 
optimised wetland mapping strategy should consider 
both optical and radar sources of EO imagery. 

• �For sub-indicator 2, EO-based methods are mature for 
total suspended solids and chlorophyll concentrations, 
which can be used to report on some aspects of water 
quality of lakes and artificial water bodies but it’s not a 
complete assessment of water quality. Sentinel 2 and 
Landsat 8 will be particularly applicable, as these have 
a higher spatial resolution, but with a lower accuracy in 
water quality retrieval.  

• �For sub-indicator 2, all ocean colour scanner like MODIS, 
VIIRS, MERIS have the potential to measure water quality 
of inland water bodies with variable results. However, 
the OLCI is designed for water quality monitoring in both 
inland and ocean settings. The main limitation for OLCI, 
as with pervious sensors such as MERIS, is the spatial 
resolution (300m). Issues associated with strong haze 
over large water bodies and sun glint have also been 
reported (ESA, 2019).
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Data sources

Data category Data sources Website

Source satellite data

Landsat https://earthexplorer.usgs.gov

Sentinel data (1,2 and 3) from the 
Copernicus Open Access Hub

https://scihub.copernicus.eu

L-Band SAR satellite series operated 
by JAXA: JERS-1 SAR (1992-1998), 
ALOS PALSAR (2006-2011) and ALOS-2 
PALSAR-2 (2014-present)

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_in-
dex.htm

Terra/Aqua MODIS https://search.earthdata.nasa.gov

Visible Infrared Imaging Radiometer 
Suite (VIIRS) weather monitoring 
system

https://earthdata.nasa.gov/earth-observation-data/
near-real-time/download-nrt-data/viirs-nrt 

Global/regional 
datasets

The Global Surface Water Explorer https://global-surface-water.appspot.com 

FLO1K, a consistent streamflow dataset 
at a resolution of 30 arc seconds 
(~1 km) and global coverage

https://www.nature.com/articles/sdata201852

CMAP (CPC Merged Analysis of Precipi-
tation) refers to a collection of precipi-
tation data sets, though the 2.5° x 2.5° 
global monthly version is probably the 
most widely used.

https://climatedataguide.ucar.edu/climate-data/
cmap-cpc-merged-analysis-precipitation

GCP (Global Precipitation Climatology 
Project)

https://precip.gsfc.nasa.gov

GMW (Global Mangrove Watch), consis-
tent dataset of mangrove extent from 
2010 (and from Feb 2019, also from 
1996, 2007-2009, 2015-2017)  

https://www.globalmangrovewatch.org

Software, tools and 
platforms

The Satellite-based Wetlands Obser-
vation Service (SWOS), developed by a 
Horizon 2020 consortium led by Jena 
Optronik, Germany which has tools and 
workflows for the following wetland 
products:
• LULC, long/short term changes
• Surface Water Dynamics 
• Wetland inventory and delineation
• Water Quality
• Land Surface Temperature 

http://portal.swos-service.eu

GlobWetland Africa – a joint prod-
uct of the Ramsar Convention and 
ESA - provides a toolbox rather than a 
dataset, although maps are produced 
for selected pilot sites in Africa. It pro-
vides workflows for wetland inventory, 
wetland habitat mapping, inundation 
regimes, Water quality, hydrological 
modelling and mangroves

http://globwetland-africa.org

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
https://climatedataguide.ucar.edu/climate-data/cmap-cpc-merged-analysis-precipitation
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A time-series of maps of the global 
mangrove extent has been generated 
within the framework of the Global 
Mangrove Watch (GMW) project 
(Bunting et al. 2018), based on 25 
meter resolution global satellite 
mosaic data from the Japanese radar 
satellites (JERS-1, ALOS and ALOS-
2), combined with optical (Landsat) 
satellite data. As of November 2018, 
maps for seven annual epochs have 
been produced: 1996, 2007, 2008, 
2009, 2010, 2015 and 2016 (and 
with 2017 foreseen to be completed 
in late 2018). By comparing maps 
from different years in the time-
series, the corresponding change 
maps can be derived. In addition to  
reporting on SDG 6.6.1 (sub-indicator 
1), mangrove extent maps can be 
used for reporting on the Nationally 
Determined Contributions under the 
Paris Agreement and the UN Reducing 
Emissions from Deforestation and 

Global Mangrove Watch – an example of EO for SDG 6.6.1
 

Figure 10: An example of GMW data for the Kahan River Delta, North Kalimantan, Indonesia. [Left] Multi-temporal radar image composite (1996 
JERS-1 SAR and 2016 ALOS-2 PALSAR-2); [Right] Global Mangrove Watch extent and change map; Red – mangrove loss 1996-2007; Orange – loss 
2007-2016; Green – mangrove cover in 2016. (Satellite image copyright JAXA/METI). 

forest Degradation scheme (REDD+) 
under the UN Framework Convention 
on Climate Change (UNFCCC). 

The Global Mangrove Watch maps 
provide an effective means for periodic 
mapping and monitoring over national 
to regional and global scales, in a 
uniform manner as the same type of 
data and classification algorithms are 
used over all areas and over several 
temporal epochs. Using these data 
enable a more consistent comparison 
of extent between different countries 
and regions as well as analysis of 
changes over time from a defined 
baseline, in comparison to the use 
of data obtained from different 
sources.  It should, however, not 
be expected that global datasets 
can achieve the same high level of 
accuracy everywhere as a local scale 
map derived through ground surveys; 
global mapping exercise using 

consistent data and methods which 
typically necessitates a trade-off in 
terms of accuracy at the local scale. 
Yet, for countries with incomplete 
or out-dated geospatial information 
about their mangrove resources, the 
GMW maps can provide important 
first baseline maps, and support field 
survey planning by indicating areas of 
potential past or recent changes. 
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A consistent mapping and monitoring 
of global wetland ecosystems 
is essential for tracking wetland 
changes and trends in support of 
the Sustainable Development Goals 
indicator 6.6.1, on the extent of water-
related ecosystems. Although EO data 
are ideal for large-scale inventorying 
of wetlands, the tremendous diversity 
of wetland ecosystems makes remote 
detection particular challenging and 
no global dataset on the distribution 
of wetlands is yet available. Thus, 
within the framework of several 
projects (Copernicus Pan-European 
2015 High-Resolution Layer on 
Water and Wetness, ESA project 
GlobWetland Africa, ESA EO4SD 
Water Resource Management), a 
methodology has been developed 
to detect and monitor wetlands in a 

EO-based Wetland Inventory of Uganda supporting the monitoring of 
SDG indicator 6.6.1
 

Figure 11: Wetland inventory of Uganda based on Sentinel-1 radar and Sentinel-2 optical imagery using data from the years 2016 and 2017 in support 
of SDG Indicator 6.6.1 on the extent of water-related ecosystems.

highly automated manner to support 
the sustainable management of 
wetland ecosystems. This approach 
has also been applied to Uganda, 
for which the Global Partnership 
for Sustainable Development Data 
(GPSDD) funded a project to compile 
an EO-based wetland inventory and 
to develop a monitoring and reporting 
platform for SDG indicator 6.6.1.

One of the major challenges when 
mapping wetlands by EO-based 
techniques is due to their diversity and 
high temporal variability compared to 
other land cover types. To properly 
address these challenges, a multi-
temporal and multi-sensor approaches 
is most valuable and provides the 
best-possible information. Therefore, 
a hybrid sensor approach making use 

of both radar and optical imagery 
has been developed which leads to 
a more robust wetland delineation 
compared to traditional (either 
optical or radar) approaches with 
optical imagery being more sensitive 
to the vegetation cover and radar 
imagery to soil moisture content. 
The methodology does not detect 
wetlands in the ecological sense, 
but rather identifies the physical 
properties of water and wet soils. The 
main output is the Water and Wetness 
(wet soil) Presence Index which can 
be translated into categorical classes 
showing areas which are permanently 
or seasonally flooded as well as areas 
permanently or seasonally water-
logged vegetated/bare areas in 
Uganda (cf. Figure 11). 
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Indicators 6.6.1
�Change in 
the extent of 
water-related 
ecosystems 
over time

Sub-Indicator 1: 
spatial extent 
dynamics

Sub-Indicator 
2: water 
quality (lakes/
artificial water 
bodies)

Sub-Indicator 
3: water 
quantity

Sub-Indicator 
4: water 
quality 
imported from 
SDG indicator 
6.3.2

Sub-Indicator 
5: groundwater 
quantity in 
aquifers

Custodian agency UN Environment; Secretariat of the Ramsar Convention on Wetlands

Tier I n/a n/a n/a n/a n/a

Status of step-by-step 
methodology document 
on the metadata 
repository

Two 
methodologies 
published by 
co-custodians

Relevance 
of EO for the 
indicator 
criteria

Maturity 
of EO 
technologies

Status  of EO 
in indicator 
guidelines

Technical 
capacity 
required

Availability 
of  global EO 
data

Robustness 
of proposed  
methodolo-
gy Criteria

Compliance 
with 
Reporting 
calendar

Sensitivity to 
change

Is it scalable 
(spatial)?

Is there a 
substitute 
for gaps 
in the EO 
record?

Overall EO relevance

Comments to support 
criteria

A variety of 
EO methods 
are available 
to map water 
bodies and 
surrounding 
land covers. 
However there 
are no EO 
established 
methods for 
vegetated 
wetland areas. 

A variety of 
EO methods 
are available 
to monitor 
water quality 
at different 
spatial 
resolutions and 
with different 
accuracies.

A challenge for 
EO to estimate 
discharge, but 
methods using 
hydrological 
models 
have been 
successful in a 
limited number 
of studies

EO data can 
be used to 
find hotspots 
(e.g. eutrophic 
lakes) where 
these WQ 
parameters 
should be field 
sampled.

Currently not 
robust enough 
to consider EO 
as a tool



GOAL 7
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Target 7.1

By 2030, ensure universal access to affordable, reliable and 
modern energy services

How can EO be used to help countries achieve the target?

Approximately 1 billion people still have no access to 
electricity, 50% of which live in sub-Saharan Africa. 
Access to energy is essential for achieving many 
sustainable development goals, from poverty reduction, 
improved health care, gender equity, and education to 
combating climate change. Energy accounts for around 
60% of total global greenhouse gas emissions and while 
energy sources are transitioning from coal, to natural gas, 
to renewables, global energy use is still primarily based 
on fossil fuels. In this context, Target 7.1 can be achieved 
and monitored with the integration of EO data. Applicable 
on a larger scale, remote sensing data is able to give 
information that by field surveys alone would be more 
time consuming and often difficult to gain because of the 
accessibility of many locations. The regular collection of 
EO ensures the long-term availability of data to monitor 
the status of remote and rural settlements. A useful data 
source is nigh-time luminosity data, which can collect 
daily variations at sufficiently low light levels to detect 
artificial lights at night across remote and rural areas. 
Night time lights products have been used for a vast range 
of purposes for more than 50 years, including to map 
the distribution of economic activity, poverty levels and 
to generate CO2 emission maps. In particular, the NASA’s 
Black Marble product suite can be used to monitor in 
near-real time areas not reached by centralized electricity 
services, and then inform the development of investment 
and implementation plans for electrical infrastructures 
aiming to protect and/or increase energy access by the 
highest number of people in a country.
 
EO-based technologies for monitoring access to different 
types of energy resources varies depending on the details 
of the information needed.  For instance, the type of 
energy source (e.g. solar panels, diesel power generators, 
nationwide electrical networks) can only be acquired using 
high resolution EO data in combination with sophisticated 
statistical techniques, but various use cases (e.g., from 
Zambia to Pakistan) show the high potential that EO have 
to monitor several aspects of this target. 

Current indicators:

7.1.1 �Proportion of population with access to electricity

7.1.2 �Proportion of population with primary reliance on 
clean fuels and technology

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 7.1.1

Computation method

Data for access to electricity are collected entirely from 
household surveys, such as Demographic and Health 
Surveys (DHS), Living Standards Measurement Surveys 
(LSMS), Multi-Indicator Cluster Surveys (MICS), the World 
Health Survey (WHS), and other nationally developed 
and implemented surveys, including those by various 
government agencies (for example, ministries of energy and 
utilities). 

Household surveys even if more precise and capable to 
provide a more comprehensive set of information, have the 
disadvantages of being more expensive, time-consuming 
and often unable to gain data from remote locations, not 
easily accessible. This results in an uncomplete view of 
the energy access of a country. EO using solar irradiance, 
meteorological, urban build up, and night time lights 
can enable systematic monitoring of electricity access, 
complementing nationwide household surveys. Global and 
freely available data also at high spatial resolution and at a 
wide radiometric detection range, can be utilised to report 
the proportion of population with access to electricity. 

Night luminosity data are particularly helpful to detect 
artificial lights at night across remote and rural areas. The 
NASA’s Black Marble product suite, available at 500 m 
resolution since January 2012 (Román et al., 2018) and 
produced with data captured by the Suomi –NPP and NOAA-
20 VIIRS Day/Night Band sensors, allows to disaggregate at 
sufficient spatial and temporal granularity the daily patterns 
in night time lights, to monitor abrupt, seasonal, and gradual 
changes associated with electrification and other human 
activities, such as conflict, rapid electrification, and cultural 
holidays. In particular, recent studies have combined Black 
Marble nighttime lights with EO-derived human settlement 
data to estimate access to electricity at very spatial (Zheng 
et al., 2018) and high temporal resolution. 

Disaggregation

Using nighttime lights, spatial disaggregation is now 
possible at the neighbourhood level. The use of additional 
spectral channels, machine learning algorithms, and 
high resolution satellite imagery would further augment 
disaggregation down to the parcel level.

Treatment of missing values

Missing values can be obtained using household surveys or 
through interpolation using known data.
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Limitations

The energy access to villages located inside forests are 
more difficult to detect using night lights imagery. In this 
case a different approach, such as household surveys, 
might be more appropriate. The use of high resolution 
EO and more advanced techniques based on SAR data 
can be used when possible (Esch et al., 2013, 2017). The 
difficulty in discriminating the use of generators to produce 
electricity from other sources can overestimate the access 
to sustainable energy.

Erratic power supply in rural areas can potentially bias the 
final results, because of the fluctuations in the nighttime 
luminosity between satellite orbits. Traditionally, this 
problem has been overcome by using image-based 
composites of a high number of images from monthly and 
annual averages of moon- and cloud-free radiances. This 
has limited the use of nighttime lights maps to annual 
intervals, or roughly half of available acquisitions during 
the lunar cycle (Elvidge et al., 2017).  Recent studies 
have uncovered additional sources of measurement error, 
particularly when image compositing methods are used. 
This includes biases resulting from aerosol contamination, 
seasonal vegetation cycles, and snow effects (Levin & 
Zhang, 2017). These findings point to an increasing need 
by the EO community to ensure that night time lights data 
sources are of sufficient quality and traceability to address 
Target 7.1 objectives. 

Key messages for countries on EO contribution to the 
computation method

• �There are several challenges surrounding energy access, 
Reisser et al. (2018) have identified the four key ones: 
the potential expansion of the use of fossil fuels driven 

by the countries’ need of expanding energy access; 
the social and environmental impact (habitat loss, 
displacement of people, etc.) caused by renewables, 
in particular hydropower; the negative relationship 
between population growth and energy access, 
where population is exploding (e.g. Africa and India) 
the energy access is lower than where  population 
is stagnant (e.g. Japan, Europe); and finally how to 
address the economic and livelihood needs resulting 
from greater demand for modern energy services. 

• �The regular availability and on a large spatial scale 
of EO data provides the opportunity to monitor 
access to electricity in a systematic way and inform 
the implementation of electrical infrastructures 
development plans.

• �Nighttime lights imagery have been widely used to 
map human presence and as a proxy measure of 
human well-being and can be used to monitor potential 
presence of electrical power.

• �Nighttime lights have been used to track the 
effectiveness of rural electrification projects in West 
Africa (e.g. Ivory Coast) and in disaster-afflicted 
communities (e.g. Puerto Rico after Hurricane Maria) 
where electricity restoration often relies on self-
reporting from local utilities.

• �Quantifying the proportion of population with access 
to electricity is more difficult as it requires human 
settlement data from which distance to the electrical 
grid can be calculated. However human settlement 
data can also be mapped from EO and global data are 
available (e.g. The Global Human Settlement Layer). 

Data sources

Data category Data sources Website

Global/regional 
datasets

NASA’s Black Marble night-time lights 
product suite (VNP46)

https://earthobservatory.nasa.gov/Features/Night-
Lights/page3.php

NOAA VIIRS Night Lights Annual Composites https://www.ngdc.noaa.gov/eog/viirs.html

POWER http://power.larc.nasa.gov 

https://earthobservatory.nasa.gov/Features/NightLights/page3.php
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Besides monitoring, EO is a critical 
component toward enabling 
communities to adopt and increase 
reliance upon clean fuels and 
technology. This is accomplished 
by coupling EO with financial and 
engineering decision support tools 
that enables the planning, design and 
feasible of clean energy technologies. 
One example is the coupling between 
the solar and meteorological data 
sets produced by NASA’s Prediction 
of Worldwide Energy Resource 
(POWER) and the RETScreen clean 
energy management software system 
(https://www.nrcan.gc.ca/energy/
software-tools/7465).  

RETScreen Expert, the advanced 
premium version of the software, 
helps to make sound decisions 
on clean energy. Developed by 
the Government of Canada, the 
software is used by more than 

Expansion of reliance on clean fuels and technology by coupling EO with 
decision support tools 
 

Figure 12: RETScreen Expert and NASA partnership couples Earth Observations with a decision support tool aimed at enabling clean energy projects 
worldwide

600,000 energy professionals and 
decision-makers globally, including 
energy engineers, facility managers, 
researchers, instructors, architects, 
financial planners and policy analysts. 
RETScreen is also used for teaching 
and research in over 1,000 universities 
and colleges around the world.  The 
tools supports project development 
in 36 different languages, allowing 
for global partnerships to aid in the 
adoption of clean energy technologies.  
The tool also enables measurement 
and verification of the actual and 
ongoing energy performance of a 
wide range of buildings, factories 
and power generation facilities. The 
global applicability of the RETScreen 
Expert tool is enabled thanks to the 
ongoing partnership with the NASA 
POWER project that provides global 
climatological solar energy information 
coupled with surface meteorological 
parameters up to a few days of real-

time (Eckman and Stackhouse, 2012; 
Stackhouse et al., 2012).  The solar 
and meteorological parameters are 
derived from NASA research projects 
using a combination of remote sensing 
analysis (Stackhouse et al., 2011) 
and the NASA’s global atmospheric 
data assimilation products from the 
Modern-era Retrospective Analysis for 
Research and Applications (MERRA-2; 
Gelaro et al., 2017). Thus, project 
planners and officials evaluate the 
feasibility of clean energy projects and 
their subsequent performance even in 
areas where surface measurements 
of those quantities are not readily 
available. 
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Indicators 7.1.1 
Proportion of population with 
access to electricity

7.1.2
Proportion of population with 
primary reliance on clean fuels 
and technology

Custodian agency World Bank WHO

Tier I I

Status of step-by-step methodology 
document on the metadata repository

Published Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status  of EO in indicator 
guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting 
calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for 
gaps in the EO record?

Overall EO relevance

Comments to support criteria

Observations of night-time lights 
have been widely used to map 
human presence and availability 
of electricity at global and regional 
scales. There are fewer examples 
of the use of this method at 
national and sub-national level, 
but several studies show a high 
potential for its application to 
monitor this indicator.

Not supported by EO
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Target 9.1

Develop quality, reliable, sustainable and resilient infrastructure, 
including regional and trans-border infrastructure, to support 
economic development and human well-being, with a focus 
on affordable and equitable access for all

How can EO be used to help countries achieve the target?

Infrastructures that are sustainable, durable and disaster-
resilient, provide the basic and essential structures 
to a country to effectively function, but also allow to 
generate employment and wealth and drive economic 
development. This target is strongly linked to other 
sustainable development goals, including zero hunger, no 
poverty, good health and well-being, as well as quality 
education. Rural development processes, including access 
to markets, education and health services, cannot succeed 
without a reliable access to roads year-round. EO data can 
inform the production of efficient and effective plans for 
infrastructures development and management. The global 
coverage of remote sensing images allows the identification 
of areas currently lacking infrastructures for transportation 
or energy access. These data coupled with information 
on topography, land cover, precipitation patterns, climate 
change scenarios, can support the development of climate 
resilient infrastructures. EO data has been widely used to 
extract infrastructures such as urban areas, roads and dams 
using data at different spatial resolution (e.g. rural roads can 
be detected just with high resolution images) and different 
techniques (e.g. supervised and unsupervised classification, 
neural networks, and mathematical morphology). Research 
is also currently focused on using high resolution or radar 
data to monitor the status of infrastructures, particularly 
in areas prone to natural disasters, such as flooding, but 
also in areas affected by conflicts. The need to plan for 
regional and trans-border infrastructure is also well served 
by EO since it is technology that crosses borders and is 
not limited by a single country’s or region’s national data 
collection systems. In theory, open access EO data should 
help countries collaborate on shared infrastructure projects.
  
Current indicators

9.1.1 �Proportion of the rural population who live within  
2 km of an all-season road

9.1.2 �Passenger and freight volumes, by mode of transport

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 9.1.1

Computation method

A final methodology to measure rural access is currently 
under development by the World Bank with support from 
the Research for Community Access Partnership (ReCAP) 
funded by the Department for International Development 
(DFID) of the United Kingdom. This new method has been 
anticipated to use spatial data, obtained directly from 
country database/website, Joint survey/compilation with 
national agency and international entity, satellite images, 
remote sensing. Georeferenced information on road 
conditions, will be collected through consultations with line 
ministries and Road Agencies.

All season roads defined as “roads motorable all year 
round by the prevailing means of rural transport (often a 
pick-up or a truck which does not have four-wheel drive), 
with some predictable interruption of short duration during 
inclement weather (e.g. heavy rainfall) allowed” (Roberts 
et al., 2006) can be identified from satellite images based 
on features such as geometry, photometry, topology, 
function and texture, or using a road model (Wang et al., 
2016; Ahmad & Deore, 2016). Several factors affect the 
effective extraction of roads from EO data, such as sensor 
type, spectral and spatial resolution, weather, cloud cover, 
variation and ground characteristics. 

Manual digitalisation and automatic or semi-automatic 
classification can be used for the extraction of roads, but 
often is preferable to utilise a combination of methods. 
Even though manually digitising an image can be time 
consuming in many areas with several linear features, 
manual editing is required for the elimination of segments 
that are not roads (Brandão and Souza, 2006). 

The methods that have been used to extract roads from RS 
images are classification based methods (supervised and 
unsupervised), knowledge based methods, mathematical 
morphology methods usually combined with image 
segmentation techniques, active contour models and 
dynamic programming and grouping (Wang et al., 2016). 
These techniques consider different features, such as 
spectral information of the pixels, edge detection, length 
and width of the feature, texture, etc.; all of them have 
both advantages and disadvantages and require different 
technical skills. A combination of methods, including 
digitisation should be used, and ground truth activities 
should complement the analyses. 

In order to produce more accurate road products, high 
spatial resolution satellite images, such as Spot 6/7 
(Transport & ICT, 2016), should be used. Landsat images 
have also been successfully utilised to extract roads using 
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bands 3 (Red) and 5 (Shortwave Infrared - SWIR), in a 
dense forest environment, where these bands appear with 
a brighter intensity, contrasting with areas of dense forest. 
The linear features with brighter intensity can thus be 
digitised (Brandão & Souza, 2006). 

The resulting road map using any of the approaches 
above and a settlement layer, such as the Global Human 
Settlement Layer and the Global Urban Footprint, can be 
used to calculate the distance from the nearest road.

Treatment of missing values

Missing values can be treated using higher resolution 
images and field surveys or composites.

Sources of discrepancies

Discrepancy can be determined by misclassification of roads 
and omission errors, based on the methods and satellite 
images used.

Limitations

In areas with high could cover radar images are required. 
Technical capacity, expensive high resolution images and 
time-intensity when the detection is country-wide, are 
other main limitations.

Key messages for countries on EO contribution to the 
computation method

• �EO data has been widely and successfully used to extract 
different types of infrastructures including roads;

• �Plans for the development of climate resilient 
infrastructures can be generated using the location 
of roads and spatial data on topography, land cover, 
precipitation patterns, and climate change scenarios;

• �Infrastructures located in areas prone to natural disasters 
can be efficiently monitored using EO imagery.

Data sources

Data category Data sources Website

Source Satellite Data

Landsat https://earthexplorer.usgs.gov

Sentinel data (1,2 and 3) from the 
Copernicus Open Access Hub

https://scihub.copernicus.eu

Pleiades https://www.intelligence-airbusds.com

WorldView, GeoEye, QuickBird, IKONOS https://www.maxar.com

Global/regional 
datasets

OpenStreetMap https://www.openstreetmap.org
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Indicators 9.1.1
Proportion of the rural population 
who live within 2 km of an all-
season road

9.1.2
Passenger and freight volumes, 
by mode of transport

Custodian agency World Bank ICAO

Tier II I

Status of step-by-step methodology 
document on the metadata repository

Unpublished
(Tier III at the time of the 
analysis)

Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status  of EO in indicator 
guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting 
calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for 
gaps in the EO record?

Overall EO relevance

Comments to support criteria

EO imagery has been widely used 
to extract the location and in 
some cases the status of roads, 
using different techniques (e.g. 
supervised and unsupervised 
classification, neural networks, and 
mathematical morphology).

Not supported by EO
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Target 9.4

By 2030, upgrade infrastructure and retrofit industries 
to make them sustainable, with increased resource-use 
efficiency and greater adoption of clean and environmentally 
sound technologies and industrial processes, with all 
countries taking action in accordance with their respective 
capabilities

How can EO be used to help countries achieve the target?

EO data can be used to measure pollutants that arise 
from industries and infrastructure. Satellite data can also 
be used to locate potential pollutant hotspots through 
analysis of global emissions, and monitoring pollution 
plumes. Satellites also collect weather and climate data, 
which can aid decision-making in relation to clean energy 
installations. For example, satellites can be used to 
forecast surface wind field data to guide operations of wind 
turbines, and predict their energy input into power grids. 
It can also be used to map photovoltaic solar electricity 
potential, based on solar irradiance climatology – which 
can be used to aid solar energy installation.  

Current indicator(s)

9.4.1 CO2 emission per unit of value added

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 9.4.1

Computation method

EO is not currently discussed in the methodological 
guidelines for the indicator, but there is wide availability 
of EO products, which would be able to complement the 
current methods. The indicator is based on the following 
equation:

Gases Observing Satellite (GOSAT) and the orbiting 
Carbon Observatory-2 (OCO-2) have been used to measure 
atmospheric column-averaged concentrations of the key 
greenhouse gases CO2 and CH4. These can be used to 
complement the current methods, through use in flux 
inversions to provide estimates of natural fluxes of CO2.
In general methods for monitoring ambient pollutant 
levels are, however, better established than monitoring 
emission levels. Several strategies are being developed to 
use atmospheric CO2 data for estimating fossil fuel CO2 
emissions (Hardwick & Graven, 2016), including targeting 
strong emitters such as large power plants and megacities 
(Velazco et al., 2011), and measuring other gases (e.g. 
CO and NOx) that help distinguish fossil fuel-derived CO2 
from natural emissions (Reuter et al., 2014). GHGSat, a 
company that undertakes global emissions monitoring, has 
used its demonstration satellite, Claire, to detect methane 
emissions, to monitor targeted sites – this could be used 
more widely. 

However currently, there is limited capacity of using EO 
data to measure CO2 emissions per unit of value added 
(the ratio between CO2 emissions from fuel combustion 
and the value added of associated economic activities). 
However, if the methodology of using satellites to measure 
CO2 emissions are developed further, there is potential for 
it to be combined with business data to create a unit of 
value added. 

One development which will aid this is the data from 
Sentinel-5P, which has recently been made available – 
allowing O3, CO, SO2 and NO2 data to be recorded. The 
Sentinel-5P spacecraft uses a TROPOMI instrument uses 
passive remote sensing techniques to measure at the Top 
Of Atmosphere (TOA) the solar radiation reflected by and 
radiated from the earth. It is the first Copernicus satellite 
dedicated to monitoring the atmosphere. The TROPOMI 
instrument can provide highly detailed and accurate data 

CO²  emission per unit   
of value added = 

CO²  emission from  
manufacturing (kg)

(Manufacturing value 
added (constant 2010 USD)
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about the atmosphere with a resolution up to 7 x 3.5km – 
detecting air pollution over individual cities.

A project by the University of Denmark, looks to improve the 
assessment of wind energy resources, through combining 
EO methodologies. It will use Copernicus Global and pan-
European products to describe vegetation properties, in 
combination with digital elevation models to derive the 
surface drag force, to lead to more accurate wind modelling 
for turbine placement, which will aid emission reduction. 
 
Limitations

The ability to distinguish manmade CO2 emissions 
from natural sources using EO data is currently not well 
established. 

Key messages for countries on EO contribution to the 
computation method

• �EO data is not currently used to monitor CO2 emission 
per unit of value added, but there are many products and 
methodologies available to do so. 

Data sources

Data category Data sources Website

Global/regional 
datasets

Gases Observing Satellite (GOSAT) http://www.gosat.nies.go.jp/en/index.html 

Carbon Observatory-2 (OCO-2) https://ocov2.jpl.nasa.gov

Sentinel 5-P
https://sentinel.esa.int/web/sentinel/missions/senti-
nel-5p/data-products
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Indicators 9.4.1
CO2 emission per unit of value added

Custodian agency IEA; UNIDO

Tier I

Status of step-by-step methodology document on the 
metadata repository

Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status  of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the EO 
record?

Overall EO relevance

Comments to support criteria
Overall amber relevance, due to high technical capacity 
required, but the wide availability, especially as a result 
of the recent release of Sentinel-5P. 
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Target 11.1

By 2030, ensure access for all to adequate, safe and 
affordable housing and basic services and upgrade slums

How can EO be used to help countries achieve the target?

“Currently, an estimated 1.6 billion people live in inadequate 
housing globally, of which 1 billion live in slums and 
informal settlements”. The rapid urban growth of recent 
decades has led to an increase of slums and informal 
settlements, as well as air pollution and inadequate 
basic services and infrastructure. The lack of proper urban 
planning and management can bring tenure insecurity, 
increase poverty, pollution, health risks, as well as a higher 
vulnerability and exposure to natural and technological 
hazards. To make urban spaces more inclusive, safe, 
resilient and sustainable the development, monitoring and 
management of better forms of urban plans are urgently 
needed. Many local governments ignore the extent of 
slums. “Slums disappear not through being removed, 
but by being transformed”, and in order to carry out this 
transformation the extent, the physical characteristics as 
well as the dynamics of slums, such as their densification 
and expansion,  need to be understood and monitored. EO 
can help both understanding and monitoring slums, but 
can also link their morphology with socio-economic data, 
as well as help to identify hazardous areas where many 
of these settlements are located. An increased number 
of studies in the last 15 years have been published on 
the use of EO to understand geography and dynamics of 
slums, thanks to the availability of very-high-resolution 
(VHR) data and the advances in the methodologies to 
analyse them. The use of EO can support monitoring of 
slums and informal settlements growth, thanks to their 
frequent coverage of large areas, for which it would be 
difficult to regularly undertake on the ground household 
surveys. By knowing the dynamics and the extent of slums, 
sustainable urban plans and slum improvement polices can 
be developed and monitored, including the improvement 
of the building structures, access to water, electricity and 
other basic needs. VHR images are also increasingly used 
by slum communities and NGOs as a basis for mapping 
and enumeration, who then use the data to negotiate for 
recognition and their right to the city and its services.

Current indicators

11.1.1 �Proportion of urban population living in slums, 
informal settlements or inadequate housing.

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 11.1.1

Computation method

The current computation method to report on this indicator, 
used two components the Slum/Informal Settlement 
households (SISH = 100 * [N. of people living in SISH 
households/city population]) and the Inadequate housing 
households (IHH = 100 * [N. of people living in IHH/city 
population]). 

The data for slums and informal settlements are derived 
from census and national household surveys, including 
Demographic and Health Surveys (DHS) and Multiple 
Indicator Cluster Surveys (MICS). The data for the 
inadequate housing component can be computed through 
income and household surveys that capture housing 
expenditures. 

Census and national household surveys, can compile 
several types of information at once, but have three main 
disadvantages: a long temporal gap between surveys, 
often 10 years; the time needed to check and analyse raw 
data; and the underestimation of the population living in 
slums/informal settlements, because of the un-transparent 
and often subjective set of criteria used to categorize them 
(Kit et al., 2013). 

Two main initiatives have produced a database of built-up 
areas, the Global Human Settlement Layer (GHSL) (Esch et 
al., 2012) and the Global Urban Footprint (Pesaresi et al., 
2013), but none of them have been able to fully account 
for slums, because of their different morphology from 
planned built-up areas and the resolution of the currently 
used images for GHSL which does not allow the distinction 
between slum and non-slum areas.

The use of EO data can help in standardizing the criteria 
used to identify slums/informal settlements by setting clear 
physical characteristics identifiable with remote sensing. 
The Generic Slum Ontology (GSO), for example, consists 
of a list of slum characteristics at three spatial levels: 
object level (building characteristics, access network), 
slum settlement level (density and shape) and the slum 
environment (location and neighbourhood characteristics) 
(Kohli et al., 2012; Kuffer et al., 2016). The GSO by being 
adapted to local conditions, can account for specific 
characteristics within the same city or among cities. Several 
techniques have been used to detect slums and informal 
settlements and thanks to the increased availability of high 
and very-high-resolution (HR & VHR) imagery, with spatial 
resolutions between less than 1 m to 5 m produced by 
sensors such as Ikonos, QuickBird, WorldView, the detailed 
spatial analyses, required to detect slums and informal 
settlements, are now feasible. In general for building 
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objects the spatial resolution needed is 2 m, for footpaths 
1–2 m, and for minor roads 5 m. If detailed building object 
information are required than a resolution of 0.5 m is 
necessary. For very dense slum areas such as those found 
in India, the highest resolutions are required if individual 
buildings are to be identified and mapped. 

Three main approaches can be used to map slums and 
informal settlements from EO imagery:

-� Proxies. Various proxies capable of identifying slums 
have been tested (Kuffer et al., 2016), also using high 
resolution imagery (e.g., Landsat, Sentinel 2 and 3, Terra 
ASTER). Vegetation cover, for example, has been proven 
to be negatively correlated to slum areas, sparser 
vegetation being associated to slum-like areas (Stoler 
et al., 2012).  Depending on the context specific proxies 
can be identified.

- �Object-Based Image (OBIA or GEOBIA).  This 
technique accounts for spatial, spectral and contextual 
characteristics of the slum surface (building 
characteristics and density, shape, access networks, 
location, etc.). It works well for the extraction of 
objects (e.g. roofs and roads) on settlement level. It 
is recommended that a combination of ontological 
indicators adapted to local levels, and converted into 
object-based parameters, such as texture, spectral 
range, and geometry are used to identify slums from 
VHR satellite images (Kohli et al., 2016).

- �Machine learning techniques (e.g. Random Forest, 
Neural Networks, Support Vector Machines). These 
techniques, based on the use of a large and rich set of 
training data, are successful in extracting slum areas 
at the city scale. Building up a sufficiently large and 
diverse training set is critical for global slum mapping 
with EO. 

Location and extent of slum areas can be mapped quickly 
using any of these three approaches or a combination of 
them. The proportion of population living in the slum areas 
identified can then be calculated using municipal data like 
election wards. In some contexts, where multi-storey 
slum buildings exist (e.g. India, Egypt, Brazil, Colombia) 
stereo images may be useful to estimate building volume 
as well as density, in order to allow better estimates of 
population to be made. 

Disaggregation

A temporal disaggregation using EO data is possible, 
since for normal circumstances daily images are not 
required, and in the case of fast growing cities, annual 
or bi-annual images are enough. This also allows the 
use of VHR images, which are characterized by a low 
temporal frequency. A thematic disaggregation can also 
be performed using income levels. 
Treatment of missing values

For areas where VHR satellite images cannot be acquired 
due to cloud cover, radar could be used as well as 
airborne/UAV data. In-situ data derived from household 
surveys can be used for areas where data are missing. An 
increasing number of NGOs are doing this (e.g. Know your 
City programme of Slum/Shack Dwellers International) 

Sources of discrepancies

The criteria to identify slums, if not objective, can 
generate discrepancies and the extent of slums can be 
underestimated. Delineating the boundary of the slums 
can also be challenging and thus generate discrepancies 
(Kohli et al., 2016). Informal/slum areas receive a 
multiplicity of names in many languages, dialects 
and slangs all over the world and their definition (UN 
HABITAT, 2015) includes far more than morphological and 
contextual aspects as for example cultural, legal, security, 
level of deprivation ones – some of them are not directly 
observable using EO techniques.

Limitations

EO data have technical challenges for characterizing 
slums such as mixed pixels or the obliqueness of images 
introducing shadowing effects, even with VHR images, 
in situations where slums and very tall buildings are 
closely packed (e.g. Mumbai, Cairo). Choosing the right 
specifications for image acquisition can thus be very 
important. Also, the cost and processing of VHR data can 
often be prohibitive, but slum mapping should not be a 
standalone application, it should be combined with other 
applications, so that the cost/benefit ratio improves. 

In areas with persistent cloud cover the use of VHR is 
limited and the use of other data such as radar has to 
be preferred.

Open source tools and platforms

Key messages for countries on EO contribution to the 
computation method

• �EO can be used to regularly monitor the extent 
and densification of slums without waiting for the 
implementation of census or national household 
surveys;

• �Monitoring slums through EO, helps understanding their 
pattern, density, location and distribution, enabling the 
development of sustainable, disaster risk resilient and 
inclusive urban plans.
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Data sources

Data category Data sources Website

Source satellite data

Landsat https://earthexplorer.usgs.gov

Sentinel https://scihub.copernicus.eu

Terra ASTER https://terra.nasa.gov/data/aster-data

WorldView, GeoEye, QuickBird, 
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https://www.maxar.com
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One of the most pressing development 
challenges is how to respond to the 
unmet demand for basic infrastructure 
services, like adequate housing, clean 
water, and sanitation, for the 1 billion 
people living in informal settlements. 
One of the main difficulties when 
looking at approaches to support 
informal settlement upgrading 
initiatives is the lack of adequate 
spatial data. 

With an eye towards using 
innovative data analytics to support 
the formulation of interventions 
and policies to upgrade informal 
settlements, in 2017, World Bank 
Group Water Global Practice launched, 
under the “Water Supply and 
Sanitation in Rapid Urbanization” 
umbrella, a pilot study in Dhaka 
(Bangladesh). A city particularly 
challenged due to congestions, poor 

Predicting informal settlement dwellers’ deprivations from space: a pilot 
study in Dhaka for planning for target 11.1
 

Figure 13: VHR EO data and analytics of informal areas/slums for the Dhaka Metropolitan area

infrastructures and regular flooding. 
The main objective was to create an 
analytical tool to support decision-
making leading to improved pro-poor 
policy interventions. The project was 
conducted through a collaboration 
between the WASH Poverty 
Diagnostic team in Bangladesh, the 
remote sensing service company 
GISAT, a member of an EO4SD Urban 
consortium working for the European 
Space Agency (ESA), and researchers 
from the University of Massachusetts 
Boston. As part of this project, a 
novel, predictive model combining 
spatial characterization analysis, 
with statistical modelling to identify 
and delineate informal/informal 
settlement areas and characterize 
informal settlement deprivation, was 
devised and tested. Two sources of 
data were combined: VHR EO data 
and analytics of informal areas/

informal settlements for the whole 
Dhaka Metropolitan area, and an in-
depth household survey conducted 
in 2016. Multiple variables derived 
from EO data were found to be 
statistically significantly associated 
with measures of deprivation. For 
example, distance to Central Business 
Districts, arterial roads, average 
dwelling size, percentage of informal, 
local primary, secondary and tertiary 
streets in informal settlements, were 
found to increase the relative risk 
of overall deprivation. The results 
from this analysis, because of their 
potential ability to predict future 
scenarios, will be able to support 
the development of inclusive policies 
and targeted planning interventions 
to help populations living in informal 
settlements.
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Indicators 9.4.1
Proportion of urban population living in slums, informal 
settlements or inadequate housing.

Custodian agency UN-Habitat

Tier I

Status of step-by-step methodology document on the 
metadata repository

Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status  of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the EO 
record?

Overall EO relevance

Comments to support criteria

The increased number of studies and advancement 
of technology allows the use of EO to map slums and 
informal settlements, but due to broad definition and 
complex structure, it still requires more research to 
identify their physical characteristics in order to develop 
more robust proxies and generalised slum models.  
Many studies and methods are developed and tested for 
specific contexts. Upscaling to global level is the next 
challenge. 



Compendium of guidance on Earth Observation to support the targets and indicators of the Sustainable Development Goals 94

COMPENDIUM OF EO CONTRIBUTION TO THE SDG TARGETS AND INDICATORS TARGET 11.2

Target 11.2

By 2030, provide access to safe, affordable, accessible 
and sustainable transport systems for all, improving road 
safety, notably by expanding public transport, with special 
attention to the needs of those in vulnerable situations, 
women, children, persons with disabilities and older 
persons. 

How can EO be used to help countries achieve the target?

EO data can inform the production of efficient and effective 
plans for road infrastructures and shipping routes (although, 
the global coverage of remote sensing images allows the 
identification of areas currently lacking infrastructures for 
transportation. This data can be combined with census data 
to provide more detailed information on public transport 
that cannot be measured through EO (e.g. railways and 
subways), as well as data on vulnerable people. EO data 
has been widely used to extract infrastructures such as 
urban areas, roads and dams using data at different spatial 
resolution (e.g. rural roads can be detected just with high 
resolution images) and different techniques (e.g. supervised 
and unsupervised classification, neural networks, and 
mathematical morphology). Research is also currently 
focused on using high resolution or radar data to monitor 
the status of infrastructures, particularly in areas prone 
to natural disasters, such as flooding, but also in areas 
affected by conflicts (Roberts et al., 2006). The need to 
plan for regional and trans-border infrastructure is also well 
served by EO since it is technology that crosses borders 
and is not limited by a single country’s or region’s national 
data collection systems. In theory, open access EO data 
should help countries collaborate on shared infrastructure 
projects.  

Current indicator:

11.2.1 �Proportion of population that has convenient access 
to public transport, by sex, age and persons with 
disabilities

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 11.2.1

Computation method

The indicator methodology currently uses earth observation 
in relation to urban planning, however there is scope for 
it to be integrated further, especially in relation to road 
identification. 

All season roads can be identified from satellite images 
based on features such as geometry, photometry, topology, 
function and texture, or using a road model (Wang et al., 
2016; Ahmad and Deore, 2016). A combination of methods, 
including digitisation should be used, and ground truth 
activities should complement the analyses. 
In order to produce more accurate road products, very 
high spatial resolution satellite images, such as Spot 6/7 
(Transport and ICT, 2016), WorldView, GeoEye or Pleiades 
(spatial resolution = 0.6 metre). An important ancillary 
dataset that can be used in conjunction with the VHR data 
is OpenStreetMap. 

Limitations

While EO can identify access to public transport, there 
currently isn’t any capacity to identify this specifically by 
sex, age and persons with disabilities.

Harmonised global/local data on urban transport systems 
do not exist, nor are they comparable at the global level. 
It is also recognised that there are various forms of public 
transport in the member countries that are not fully defined 
or captured. 

Manual digitalisation and automatic or semi-automatic 
classification can be used for the extraction of roads, but 
often is preferable to utilise a combination of methods. 
Even though manually digitising an image can be time 
consuming in many areas with several linear features, 
manual editing is required for the elimination of segments 
that are not roads. 

Open source tools and platforms

There are a number of global EO-based tools that are 
available that could assist NSOs and indicator custodians 
with delivering and implementing EO-based methodologies. 
For example, the GEO Human Planet initiative, the Global 
Urban Footprint/World Settlement Footprint, and the 
Global Human Settlement Layer. OpenStreetMap, is a useful 
resource, however the accuracy of this data is unknown.
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Data sources

Data category Data sources Website

Source satellite data

Landsat https://earthexplorer.usgs.gov/

Sentinel data (1,2 and 3) from 
the Copernicus Open Access Hub

https://scihub.copernicus.eu/

Pleiades https://www.intelligence-airbusds.com

WorldView, GeoEye, QuickBird, 
IKONOS

ttps://www.maxar.com

Global/regional 
datasets

The Global Urban Footprint (GUF) 
/ World Settlement Footprint

https://urban-tep.eu

The Global Human Settlement 
Layer (GHSL)

https://ghsl.jrc.ec.europa.eu/data.php

Software, tools and 
platforms

The GEO Human Planet initiative https://ghsl.jrc.ec.europa.eu/HPI.php 

OpenStreetMap https://www.openstreetmap.org

Key messages for countries on EO contribution to the 
computation method

• �EO is currently used to monitor the indicator in relation 
to urban planning

• �EO can be further used to identify different roads and 
shipping routes
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Indicators 11.2.1
Proportion of population that has convenient access to public 
transport, by sex, age and persons with disabilities

Custodian agency UN-Habitat

Tier I

Status of step-by-step methodology document on 
the metadata repository

Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in 
the EO record?

Overall EO relevance

Comments to support criteria

There is an overall amber relevance. Urban accessibility can 
be measured through percentage of street space in cities 
and number of intersections/km2 from analysis of earth 
observations and/or city maps. 



Compendium of guidance on Earth Observation to support the targets and indicators of the Sustainable Development Goals 97

COMPENDIUM OF EO CONTRIBUTION TO THE SDG TARGETS AND INDICATORS TARGET 11.3

Target 11.3

By 2030, enhance inclusive and sustainable urbanization and 
capacity for participatory, integrated and sustainable human 
settlement planning and management in all countries

How can EO be used to help countries achieve the target?

Urban areas are rapidly expanding to accommodate the 
growing number of people moving to cities. “From 2000 
to 2015, in all regions of the world, the expansion of 
urban land outpaced the growth of urban populations”. 
An uncontrolled urban sprawl can lead to the increase of 
carbon emissions, poverty, health and safety risks, social 
inequalities, and vulnerability to natural disasters. The 
achievement of this target will ensure that land is used 
efficiently, allowing sustainability and inclusiveness, but it 
also provides the foundation for attaining other sustainable 
development goals related to health, food security, energy, 
safety and poverty. Urban growth needs to be monitored 
and managed to ensure the sustainable use of land. The 
improvement of EO technology and the availability of high 
temporal and spatial resolution images, as well as the 
advancement in the methodologies proposed to identify 
built up areas from satellite images, have created a good 
opportunity to plan and monitor urban development. EO 
has been used for the direct monitoring and dynamic 
simulation of urban expansion since the ‘60s and new 
models and methods are continually being proposed and 
tested. Remote sensing data can support the generation 
of country specific urban expansion models and inform the 
development of sustainable urban plans. In particular, they 
can inform the development of urban plans that include the 
increase of green spaces where these are lacking, identify 
where these spaces have the capacity to mitigate natural 
hazard such as floods, and therefore should be prioritise for 
protection, which are the most vulnerable areas to disaster, 
as well as to enhance infrastructures such as roads or 
access to energy, in poorer areas of the city, to include its 
inclusiveness. The effectiveness of these plans can then be 
regularly monitored and adapted through EO.

Current indicators:

11.3.1 �Ratio of land consumption rate to population growth 
rate

11.3.2 �Proportion of cities with a direct participation structure 
of civil society in urban planning and management 
that operate regularly and democratically

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 11.3.1

Computation method

The current computation method includes the estimate 
of two components, the population growth rate and the 
land consumption rate, which indicates the progressive 
expansion of a city. The land consumption rate can be 
calculated using the total areal extent of built-up areas for 
a past year, and the current year, divided by the number 
of years between the two measurement periods. Similar 
approach is used to derive the population growth rate, 
and the combination of the two rates will provide the final 
indicator “Ratio of land consumption rate to population 
growth rate”. Satellite images are indicated as the source 
of data to extract the extent of built up areas. 

Countries can report on the expansion of built up areas, 
by using image acquisitions of multiple dates. Satellite 
sensors derive information about the earth surface with a 
range of spatial resolutions ranging from a low resolution 
(e.g. MODIS, MERIS, Sentinel-3), medium resolution (e.g. 
Sentinel-1/-2, Landsat, ASTER, Radarsat) and high to very 
high resolution (e.g. TerraSAR-X, COSMO Sky-Med, QuickBird, 
WorldView, GeoEye, Pléiades) including aerial images and 
images derived from drone campaigns. The remote sensing 
sensors acquire information also in different wavelengths 
of the electromagnetic spectrum. Three main types can 
be classified in optical sensors (e.g. Sentinel-2, Landsat, 
WorldView, etc.), microwave (SAR) sensors (e.g. Sentinel-1, 
TerraSAR-X, Radarsat) and thermal sensors (ASTER, 
Sentinel-3). Some of the above mentioned satellite missions 
provide images in various spatial resolutions and spectral 
ranges. Medium resolution sensors are suitable to monitor 
large areas up to the entire globe. EO-based thematic 
baseline layers such as the Global Human Settlement Layer 
and the Global Urban Footprint (GUF) / World Settlement 
Footprint (WSF) are derived of sensors with this resolution. 
The Sentinel missions with their systematic and long-term 
operational service guarantee represent a unique, but yet 
to be fully realised, opportunity for advancing global urban 
mapping. High and very high resolution sensors are suitable 
for city and sub-city scale applications.

Night time lights (NTL) derived of optical sensors can 
provide also information on settlement areas. NTL data 
from the Defense Meteorological Satellite Program’s 
Operational Line-Scan System (DMSP-OLS) can also be 
used to measure artificial illumination and extract built-
up areas, for example by combining vegetation indices 
and night-time light urban areas (Goldblatt et al., 2018). 
Night time lights data are a valuable source in particular 
when the goal is to gain information on poverty and energy 
consumption, and when analysing climate/heat related 
aspects of built-up areas. A useful products that combine 
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population statistics and nightlights is the Global Rural 
Urban Mapping Project (GRUMP). It provides a series of 
multi-temporal grids (1990-1995-2000) at approximately 
1 km spatial resolution, but can under-estimate countries 
where the illumination footprint is not as strong as in 
developed countries (Melchiorri et al., 2018).

Built-up areas can be characterized by thermal sensors by a 
higher land surface temperature than that of suburban, with 
lower density, and rural areas due to the heat emissions 
from the residences, traffics, industries and manual labour in 
the built-up area. The thermal infrared band of EO data, such 
as Landsat TM, ETM+, OLI, TIRS, can be used to extract the 
land surface temperature. Boundaries are then drawn around 
areas with higher temperature (Wang et al., 2018).

A huge variety of methods to delineate urban areas using 
remote sensing data is documented in the scientific 
literature. Many approaches combine multiple workflows. 
Most methods use the spectral and structural properties of 
built-up areas to classify urban and non-urban areas. Two 
widely used methods are described below:

• �Machine learning techniques. 
The machine learning techniques that are commonly 
used to detect built-up areas are supervised classification 
approaches such as Support Vector Machines, Random 
Forest or decision tree technology (Corbane et al., 2017; 
Esch et al., 2013). These methods basically link the image 
data to a defined collection of semantic layers based on 
training data sets. Training data can be any representative 
data that allows to approximate the built-up areas class. 
The resulting classification models can then be used for 
deriving human settlements information from satellite 
imagery – e.g., Sentinel-1 and Landsat data (Esch et 
al., 2018; Corbane et al., 2017). Deep learning methods 
emerged also in this domain in the last years.

• Geographic object-based image analysis (GEOBIA). 
This technique typically uses very high resolution satellite 
imagery (<5m), usually between 2 and 0.5m (Herold et al., 
2012; Wezyk et al., 2016; Molenaar, 2001). The objects to 
be analysed, in this case built-up areas, can be obtained 
from image segmentation and then classification of the 
segments. Image segments are representative clusters 
of neighbouring pixel with similar spectral properties. 
This approach requires a high processing effort and it is 
realistically applicable just at local to regional scale.

Disaggregation

EO-based products can be used to disaggregate types 
of built-up structure (residential, industrial, etc.). 
Disaggregation is often used to distribute population data, 
as well as socio-economic data, such as income level. 
Using the data from indicator 11.1.1 residential areas can 
be differentiated from slums/informal settlements.

Treatment of missing values

At a local scale missing values can be obtained using ground 
truth surveys or very high resolution EO data. Temporal 
interpolation is also feasible as long as a reasonable time 
series is available.

Sources of discrepancies

One of the main source of discrepancy derives from the 
definition of built up area, this can be avoided by using the 
same baseline datasets. Other sources of discrepancy are 
the underlying imagery (sensor), the classification method, 
the training data and the quality assurance procedure.  If 
the NTL approach is used, discrepancies can be generated 
from the use of different thresholds for the pixel value at 
which the category urban development is assigned.
Limitations
Missing data in areas with high cloud cover prevent the 
mapping of entire sections of built-up areas leading to 
the underestimation of the real extent of urban areas. The 
calculation of rate of change in land consumption is limited 
by the number of acquisitions the EO satellite can obtain 
of built up area, which has to be consistent at the national 
scale, requiring longer compositing periods, several years 
in the case, for example, of tropical regions. The use of 
SAR data and of improved methods (e.g. TimeScan) can 
overcome some of these issues. At a local scale, missing 
data can be obtained using ground truth surveys or very 
high resolution EO data. 

Key messages for countries on EO contribution to the 
computation method

•  �EO are a valuable  source of data, to monitor urban 
growth and have been widely used to map and model 
the expansion of cities;

•  �EO can support the development of urban plans that use 
efficiently and sustainably the available land;

•  �The combination of several types of EO data and 
products, such as topography, climate change scenarios, 
land cover and precipitation patterns, can inform the 
development of natural disaster resilient urban plans.
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Data sources

Data category Data sources Website

Source satellite data

Landsat https://earthexplorer.usgs.gov/

Sentinel data (1,2 and 3) from 
the Copernicus Open Access Hub

https://scihub.copernicus.eu/

MODIS https://search.earthdata.nasa.gov 

Global/regional 
datasets

The Global Urban Footprint 
(GUF) / World Settlement Foot-
print (WSF)

https://urban-tep.eu

NASA’s Black Marble nighttime 
lights product suite (VNP46)

https://earthobservatory.nasa.gov/Features/NightLights/
page3.php 
https://www.ngdc.noaa.gov/eog/viirs.html

NOAA. N.d. “Version 4 DM-
SP-OLS Nighttime Lights Time 
Series.” 

https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html

‘GHS built-up grid, derived from 
Landsat, multitemporal (1975, 
1990, 2000, 2014)’. European 
Commission, Joint Research 
Centre (JRC) [Dataset]

http://data.europa.eu/89h/jrc-ghsl-ghs_built_ldsmt_globe_
r2015b

‘GHS Settlement grid follow-
ing the REGIO model 2014 in 
application to GHSL Landsat and 
CIESIN GPW v4-multitemporal 
(1975-1990-2000-2015)’. Euro-
pean Commission, Joint Research 
Centre (JRC) [Dataset]

http://data.europa.eu/89h/jrc-ghsl-ghs_smod_pop_globe_
r2016a

Software, tools and 
platforms

Trends.Earth Urban Mapper from 
Conservation International

https://geflanddegradation.users.earthengine.app/view/
trendsearth-urban-mapper

Global Rural-Urban Mapping 
from the Centre for Internation-
al Earth Science Information 
Network (CIESIN), Columbia 
University.

http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-
extents

Urban Thematic Exploitation 
Platform (U-TEP)

https://urban-tep.eu

https://earthobservatory.nasa.gov/Features/NightLights/page3.php
http://data.europa.eu/89h/jrc-ghsl-ghs_built_ldsmt_globe_r2015b
http://data.europa.eu/89h/jrc-ghsl-ghs_smod_pop_globe_r2016a
https://geflanddegradation.users.earthengine.app/view/trendsearth-urban-mapper
http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents
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Satellites enable a spatially and 
temporally continuous observation of 
Earth’s surface. Recently, the German 
Aerospace Centre (DLR) and the 6 
team have succeeded in deploying a 
newly developed method to map the 
growth of human settlement extent 
at 30m spatial resolution on a yearly 
basis over three decades from 1985 
to 2015. The generation of this World 
Settlement Footprint (WSF) Evolution 
dataset is based on a multi-temporal 
analysis of more than six million 
satellite images of the Landsat 
mission.

To facilitate an effective and joint 
exploration of data collections related 
to the built environment – e.g. the 
new WSF Evolution that will be 
accessible on a free and open basis 
in 2019 – a consortium funded by the 
European Space Agency (ESA) and led 
by DLR has set-up the Urban Thematic 
Exploitation Platform (U-TEP). U-TEP 
represents a web-based, open and 
collaborative virtual environment 
providing services for high-
performance data access, processing, 
analysis and visualization. At the 

A new dataset and online platform to plan for inclusive and sustainable 
urbanisation for SDG target 11.3
 

Figure 15: Calculation of indicator “Ratio of land consumption rate to population growth rate” (SDG 11.3.1) with the Urban Thematic Exploitation 
Platform. The bar chart and table show the Population Change normalized by Settlement Area Change
(www.urban-tep.eu). Credit: DLR/Gisat

Figure 14: WSF Evolution of Bangkok region, Thailand. Red corresponds to the urban extent in 
1985 and yellow-green-blue indicates the growth to 2015. Credit: DLR

same time this enabling technology 
aims at supporting the development 
and sharing of technical solutions, 
thematic data and knowledge related 
to sustainable cities and communities 
in general.

One key use scenario of U-TEP’s 
analytics and visualization toolbox 

includes the implementation of a 
service for the worldwide on-demand 
calculation of SDG 11.3.1 “Ration of 
land consumption rate to population 
growth rate” based on the WSF 
Evolution and the statistics of the 
World Bank Open Data Catalogue 
(https://data.worldbank.org).
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Indicators 11.3.1
Ratio of land consumption 
rate to population growth 
rate

11.3.2
Proportion of cities with a 
direct participation structure 
of civil society in urban 
planning and management 
that operate regularly and 
democratically

Custodian agency UN-Habitat Unknown

Tier II II

Status of step-by-step methodology document on 
the metadata repository

Published
Unpublished
(Tier III at the time of the 
analysis)

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

EO has been used to monitor 
urban growth since the 60s. 
Several techniques have 
been tested and new ones 
are under development, 
but technical expertise 
are required to implement 
these methods. Systematic 
and comparative accuracy 
assessment of thematic 
products (derived from EO 
data) and related methods 
are required.

Not supported by EO
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Target 11.5

By 2030, significantly reduce the number of deaths and the 
number of people affected and substantially decrease the 
direct economic losses relative to global gross domestic 
product caused by disasters, including water-related 
disasters, with a focus on protecting the poor and people 
in vulnerable situations

How can EO be used to help countries achieve the target?

This target seeks to reduce the adverse effects of natural 
disasters.  It recognises the growing impact of natural 
disasters around the world and the heightened risk, 
especially to vulnerable populations, e.g. in unplanned 
urban settlements without adequate protection or planning. 
It targets both slow-onset, climate related disasters such 
as sea level rise and extreme weather events. Human loss 
is the main focus of the target, both in terms of mortality 
and injury, and negative economic impacts of disasters.  
This target also relates to targets 1.3, 1.5, 3.6, 3.9, 15.3, 
12.1 and 14.2 as well as related targets in the Sendai 
Framework for Disaster Risk Reduction 2015-2030.  EO can 
play a role in both planning and achievement of this target. 
For planning purposes, EO can map both the areas that 
are vulnerable to disasters, e.g. coastal, low-lying areas or 
areas of deforested, steep slope, susceptible to landslides 
as well as  to map vulnerable populations, e.g. through 
informal urban settlement mapping. EO also has a role to 
play in planning for natural disasters by the provision of 
early warnings systems where flooding, fires and landslides 
pose a risk to people and their material goods.  In order to 
achieve the target EO can be used to assess the overlap or 
proximity between vulnerable population and areas prone 
to disaster and the extent of change in this overlap area in 
order to ascertain if the human related loss is increasing 
or decreasing over time.  Although not EO-derived, globally 
gridded GDP data can contribute to the achievement of this 
target by mapping the geographic location of the poor (see 
indicators 1.2.2 and 1.2.1). 

Current Indicator(s)

11.5.1 �Number of deaths, missing persons and persons 
affected by disaster per 100,000 people

11.5.2 �Direct economic loss in relation to global GDP, 
damage to critical infrastructure and number of 
disruptions to basic services, attributed to disasters

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 11.5.1

Computation method

Indicator 11.5.1 relies on a long-established method of 
quantifying natural disaster loss - the national disaster loss 
database compiled at a national scale and reported to the 
United Nations Office for Disaster Risk Reduction (UNISDR). 
This approach involves registering physical damage value 
(housing unit loss, infrastructure loss etc.), which needs 
conversion to monetary value. The converted global, 
monetary value is divided by global GDP calculated from 
the World Bank Development Indicators. Spatial gridded 
GDP data are available globally but these are derived from 
statistical data, not EO (Nordhaus, 2006).

Although the computational method does not employ EO 
data currently, mapping and quantifying the economic value 
of physical damage to housing and roads is a developing 
area for EO, particularly on disaster preparedness/warning 
and response/monitoring (Bello & Aina, 2014). The EO 
methods are designed to relay information on sites of 
damage to authorities as quickly as possible to minimise 
disruption and loss of life. Such information, compiled over 
time, could be fed into a national disaster loss database. 
An important EO based Emergency and Disaster Mapping 
Service hitherto not used for the assessment of Indicators 
of Target 11.5, is the European Commission supported 
Copernicus Emergency Management Service (EMS) which 
“uses satellite imagery and other geospatial data to provide 
free of charge mapping service in cases of natural disasters, 
human-made emergency situations and humanitarian 
crises throughout the world,”(http://emergency.copernicus.
eu/mapping/ems/emergency-management-service-
mapping). The programme provides a “Rapid mapping” 
service to assess extent of damage shortly after an event 
as well as a “Risk & Recovery Mapping” Service.

The power of EO to monitor and map damage from natural 
disasters has been demonstrated notably for: assessing 
shoreline damage following tsunamis (Bello & Aina, 2014); 
building damage following earthquakes using very high 
resolution optical imagery at spatial resolution of 1m 
(Chesnel, Binet, & Wald, 2007); and flood-related damage 
to roads using very high resolution optical imagery, a digital 
elevation model and SAR for flooded area detection (Frey 
& Butenuth, 2009). Fusion of optical and SAR data and 
more detailed use of radiometric elements of the optical 
imagery is encouraged for detecting manmade objects and 
their destruction, particularly for mapping usable roads 
post-flooding (Butenuth et al., 2011). With the advent 
of the Sentinel suite of EO data and the Copernicus EMS 
programme, the impact of a natural disaster on a population 
can be assessed using the EMS products in conjunction 
with geo-spatial population density data.
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All the above examples require vector-based maps to 
support the analysis in a GIS environment, e.g. building 
footprints and road networks, comparing them before 
and after disaster, to evaluate loss. However, those layers 
could potentially be derived from the imagery used to map 
disaster areas.

Limitations

The area of damaged infrastructure reported using EO still 
needs to be converted to economic loss. Values of global 
GDP will need to be derived elsewhere. More generally, the 
type of EO data used varies with the nature of the disaster, 
i.e. whether slow onset or from extreme weather or events. 
Slow onset events require an EO-based monitoring system 
which is commensurate with the rate of change and the 
change in disaster risk level. The use of EO to monitor 
sudden events is limited to post-disaster recovery efforts, 
e.g. in surveying infrastructure damaged and therefore 
needs careful selection and combination with other types 
of spatial data such as the pre-disaster road network. 

Key messages for countries on EO contribution to the 
computation method

• �This indicator follows a well-established methodology based 
on related indicators, e.g. for the Sendai Framework, from 
national disaster loss databases.

• �An EO-based method for the indicator would have to be 
customised for the nature of the disaster, whether long-
term onset or sudden, and whether in coastal, inland or 
mountainous settings.  

• �Current EO based assets for disaster monitoring mostly 
focus on post disaster recovery efforts but for this indicator 
would need to be enhanced to evaluate physical damage 
and the proportion of the population affected by the disaster

• �The EO based methods for infrastructural damage 
assessment are more advanced than those for assessing 
human impact (mortality, injury, relocation etc.)

• �However, combining advances made in EO-based human 
settlement mapping with the ability to evaluate physical 
damage in disaster zones could pave the way for the use of 
EO in the indicator computation 

Data sources

Data category Data sources Website

Global/regional 
datasets

The Global Urban Footprint 
(GUF) / World Settlement Foot-
print (WSF)

change hyperlink to 

The Global Human Settlement 
Layer (GHSL)

https://ghsl.jrc.ec.europa.eu/data.php

Software, tools and 
platforms

The GEO Human Planet initiative https://ghsl.jrc.ec.europa.eu/HPI.php

Global Gridded Geographically 
Based Economic Data (G-Econ), 
v4 (1990, 1995, 2000, 2005)

http://sedac.ciesin.columbia.edu/data/set/spatiale-
con-gecon-v4/docs

Operational or
commercial services

The UN-SPIDER programme http://www.un-spider.org/

Copernicus Emergency Manage-
ment Service (EMS)
The GEO Human Planet initiative 

http://emergency.copernicus.eu/mapping/ems/emergen-
cy-management-service-mapping

http://sedac.ciesin.columbia.edu/data/set/spatialecon-gecon-v4/docs
http://emergency.copernicus.eu/mapping/ems/emergency-management-service-mapping
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Indicators 11.5.1
Number of deaths, missing 
persons and persons affected 
by disaster per 100,000 
people

11.5.2
Direct economic loss 
in relation to global 
GDP, damage to critical 
infrastructure and number 
of disruptions to basic 
services, attributed to 
disasters

Custodian agency UNISDR

Tier II II

Status of step-by-step methodology document on 
the metadata repository

Published
Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

Not supported by EO Damage to critical 
infrastructure and disruption 
to services can be directly 
mapped from EO while GDP 
impact can only be inferred 
from such visible damage.
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Target 11.6

By 2030, reduce the adverse per capita environmental 
impact of cities, including by paying special attention to air 
quality and municipal and other waste management

How can EO be used to help countries achieve the target?

Minimising the per capita environmental impact of cities 
is challenged by traffic congestion, lack of funds to provide 
basic services, a shortage of adequate housing, declining 
infrastructure and rising air pollution within cities. This 
target covers aspects of waste generated by cities and 
aims to reduce the amount of solid waste generated and 
air polluted, while encouraging better waste management. 
Therefore EO can be used in three major aspects of this 
target – the spatial mapping of cities and the sources of 
pollution, the identification and treatment of waste in and 
around cities and in planning better waste management for 
per capita pollution reduction. 

Firstly, satellite observations of human settlement are 
increasingly more sophisticated allowing the impact of 
cities to be assessed based on their spatial extent and 
density. EO-derived maps of cities allow the size, shape and 
other metrics of urban setting (e.g. urban population) to be 
monitored from which likely environmental impact could 
be inferred. Within cities there are identifiable sources 
of aerosol emissions such as power plants and various 
industrial processes. These sources generate significant 
amounts of particulates, e.g. fine particulate matter 
(PM2.5), which can have adverse effects on human health. 
Remote sensing of dry PM2.5 mass concentration near the 
ground is now feasible. In addition to particulates, trace 
gases that affect air quality are now routinely monitored 
over large urban areas. 

In addition to air pollution, solid waste management can 
be supported in cities by using EO as a tool to evaluate the 
impact of different phases of the waste cycle. In particular, 
very high resolution EO has been shown to be effective 
in the detection of illegal waste disposal sites through 
visual image interpretation and classification as well as the 
monitoring of the spread of municipal landfill sites using 
multi-temporal thermal Landsat imagery. 

Current Indicator(s):

11.6.1 �Proportion of urban solid waste regularly collected 
and with adequate final discharge out of total urban 
solid waste generated, by cities

11.6.2 �Annual mean levels of fine particulate matter (e.g. 
PM2.5 and PM10) in cities

Potential new indicator(s) based on EO:

The number of illegal waste sites identified and eradicated 
in cities

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 11.6.2

Computation method

For indicator 11.6.2 the annual urban mean concentration 
of PM2.5 is estimated by modelling satellite remote 
sensing data with ground measurements from the 2016 
WHO ambient (outdoor) air quality database, which serves 
for calibration of the satellite data (WHO, 2016). EO-
derived aerosol optical depth data are typically retrieved 
at low spatial resolutions, e.g. Aerosol Optical Depth 
product from VIIRS at 750m resolution (NOAA STAR, 
2018). Derived products such as particle size describe 
the nature of the aerosol and can be used to estimate 
the size of the particulate matter (e.g. <2.5µg). Annual 
mean concentrations of particulates over cities are then 
combined with the corresponding number of inhabitants 
to derive the population-weighted exposure to particulate 
matter in cities. 

Treatment of missing values

Missing values are currently excluded from the regional 
and global averages. However, there is potential to use 
models (e.g. the Copernicus Atmosphere Monitoring Service 
outputs from the ECMWF) to fill data gaps.

Sources of discrepancies

Pixel-based satellite measurements and cell-based 
chemical transport modelling are fundamentally different 
approaches and vary in their ability to capture different 
microscale features that may be reflected in the ground 
measurements. All three sources of data will be subject to 
error, which may not be consistent with each other.  The 
variance in spatial resolution between ground monitors 
(point locations) and estimates from satellite and chemical 
transport models (grid cells) has led to the use of spatially 
varying coefficient models, which are often referred to as 
downscaling models (Shaddick et al., 2018). 

Limitations

Ground station measurements of air particulates are needed 
to validate the EO-derived measurements, therefore this 
indicator remains partly measurable with EO. 

Key messages for countries on EO contribution to the 
computation method

• �Air quality is a relatively well established area of EO 
application, in particular in the detection of aerosols from 
fossil fuel combustion – both industrial and domestic 
sources in cities
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Data sources

Data category Data sources Website

Source satellite data

GOSAT-2 http://global.jaxa.jp/activity/pr/brochure/files/sat38.pdf

Sentinel- 5P
https://sentinel.esa.int/web/sentinel/missions/sentinel-5p/
data-products 

MODIS Aerosol Product https://modis.gsfc.nasa.gov/data/dataprod/mod04.php

Sentinel-3 Aerosol Optical Depth 
Product

https://sentinel.esa.int/web/sentinel/technical-guides/senti-
nel-3-olci/level-2/aerosol-optical-thickness

Operational or
commercial services

The Copernicus atmosphere 
monitoring service

https://www.ecmwf.int/en/about/what-we-do/environmen-
tal-services/copernicus-atmosphere-monitoring-service

• �The indicator methodology already integrates EO with 
ground data to estimate levels of air pollution over cities 
but as the method relies on ground data for validation 
and ground level air pollution levels, it is only partly 
measurable with EO

• �The estimate of per capita impact requires the total 
number of city inhabitants to be accurately estimated 
so that the indicator can be correctly computed. Such 
information should be readily available at the national 
level. 

https://sentinel.esa.int/web/sentinel/missions/sentinel-5p/data-products
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-2/aerosol-optical-thickness
https://www.ecmwf.int/en/about/what-we-do/environmental-services/copernicus-atmosphere-monitoring-service
https://www.star.nesdis.noaa.gov/portfolio/productListings.php
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Indicators 11.6.1
Proportion of urban solid 
waste regularly collected and 
with adequate final discharge 
out of total urban solid waste 
generated, by cities

11.6.2
Annual mean levels of fine 
particulate matter (e.g. 
PM2.5 and PM10) in cities

Custodian agency UN-Habitat; WHO

Tier II I

Status of step-by-step methodology document on 
the metadata repository

Published
Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

Not supported by EO EO based methods for fine 
particulate matter detection 
over cities are routine and 
operational
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Target 11.7

By 2030, provide universal access to safe, inclusive and 
accessible, green and public spaces, in particular for women 
and children, older persons and persons with disabilities

How can EO be used to help countries achieve the target?

Green and public spaces in cities are important for human 
well-being and economic development and should be 
sustainable spaces for all to use equally. Increasingly 
there are inadequate, poorly designed, or privatized public 
spaces in cities that generate exclusion and marginalization 
for inhabitants, especially those who are vulnerable. This 
target addresses the drastic reduction in the quality of 
green and public space in cities and seeks to make them 
safe and inclusive for all regardless of gender, age or level 
of mobility. Public space is made of streets and green and 
open spaces in public use. EO can help countries to achieve 
this target because it is a useful tool to establish the 
extent of urban areas as well as to do an inventory of open 
space in cities, especially green open space. The challenge 
in using EO to complete the target will be in discerning 
what private and public space is as they will have the same 
spatial characteristics from an EO point of view. Furthermore 
the notion of access is complicated as it implies freedom of 
movement and this not a practically measurable quantity 
from EO. Therefore while certain aspects of the target can 
be planned for using EO, much will depend on other in 
situ data sources or local ancillary data such as cadastral 
records, land use or basic topography. 

Current Indicator(s)

11.7.1 �Average share of the built-up area of cities that is 
open space for public use for all, by sex, age and 
persons with disabilities

11.7.2 �Proportion of persons victim of physical or sexual 
harassment, by sex, age, disability status and place 
of occurrence, in the previous 12 months

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 11.7.1

Computation method

The computational method for indicator 11.7.1 was still 
under discussion and not yet finalised and published at the 
time of the analysis. Much of the discussion has focused on 
a clarification of terms, e.g. of ‘built-up area’.  Nevertheless 
the method for the estimation of area of public space, 
according to the work plan, will consist of three steps: a) 
spatial analysis to delimit the built-up area of the city; b) 
estimation of the total open public space and; c) estimation 
of the total area allocated to streets. EO is mentioned in 
the methodology as a potential source of data in step 1 to 
map built up area (urban delimitation), in combination with 
the methodology “National Sample of Cities” proposed by 
UN-Habitat1 . Land use maps can be used to identify the 
public space within the built up area. Estimation of the 
land allocated to street is based on an in situ sampling 
regime or, as proxy, using of open datasets (e.g. OSM) 
when available and EO is not foreseen as a method here. 

Limitations

The main limitation expected will be in the acquisition of 
optical imagery at the required spatial resolution to delineate 
open space within ‘locales’. There are some small green 
open spaces (local parks) that cannot be distinguished due 
to the limited spatial resolution of free and open satellite 
images. The possibility of small urban space detection 
increases with VHR imagery.  However such imagery is 
rarely free and would put the burden on city authorities to 
purchase expensive imagery. The variance in definition of 
open space between cities (and countries) will also be a 
challenge for an EO-based approach.

Key messages for countries on EO contribution to the 
computation method

• �This methodology is in development but it is likely that 
EO will play a role in the computational method. The 
spatial resolution of images is a key factor to use them 
in 11.7.1 calculation, the higher the resolution, the better 
the classifications can be to differentiate green, built-up 
and street areas. 

• ��Countries need to make a choice between the delimitation 
of built up area from EO imagery by themselves or to use 
existing EO products

1  https://unhabitat.org/national-sample-of-cities/	
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Data sources

Data category Data sources Website

Global/regional 
datasets

The Global Urban Footprint (GUF) 
/ World Settlement Footprint 
(WSF)

https://urban-tep.eu

The Global Human Settlement 
Layer (GHSL)

https://ghsl.jrc.ec.europa.eu/data.php

Software, tools and 
platforms

Night time lights data https://sos.noaa.gov/datasets/nighttime-lights/

Urban Thematic Exploitation 
Platform

https://urban-tep.eu

Operational or
commercial services

Copernicus Services: Urban Atlas https://land.copernicus.eu/local/urban-atlas

Copernicus High Resolution 
Layers

https://land.copernicus.eu/pan-european/high-resolution-lay-
ers/imperviousness

• �Very high resolution EO imagery to delineate the built-up 
area and small green areas will obligate countries to pay 
for commercially acquired imagery. Although at the edge 
of applicability in an urban context with 10m resolution, 
Sentinel-2 images are free of charge. A world-wide data 
archive is currently being built up. 

• �Countries can use ready-to-use products, such as the EO-
derived GHSL or GUF listed above, in which case it is not 
necessary to acquire any new satellite images.

• �EO will not be used to quantify the amount of open, 
public space within the built up area and the estimation 
of area covered by streets  which is more feasible using 
local land use and urban datasets 

• �Readily available and global EO products are already 
being used for built up area mapping, e.g. as part of 
the GEO Human Planet initiative,  but the definition of 
built up area has not yet been finalised in the indicator 
methodology and it may differ from the definition used 
in these data products

https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness
https://blogs.worldbank.org/sustainablecities/quantifying-public-spaces-better-quality-urban-assets
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VHR satellite imagery is being used 
in a framework to examine how 
urban green and open areas (GOA) 
can transform urban environments by 
promoting inclusive green growth and 
enhance liveability in megacities. This 
framework has been developed by 
the World Bank Group UrbanScapes 
Team which has initiated an Advisory 
Services and Analytics (ASA) activity 
to support ongoing investment 
in operations on the ground. The 
framework is being piloted in Karachi 
(Pakistan) and Dhaka (Bangladesh, 
fig.1). Overall cooperation under this 
ASA aims to: 

(i) �Develop an enhanced diagnostic on 
the nature of public spaces, and the 
opportunities and challenges; 

(ii) �Provide a concrete body of 
evidence on public spaces-related 

Planning for target 11.7: Earth Observation for Transforming Cities 
through Public Spaces
 

Figure 16: Very high resolution satellite 
imagery has been used in cooperation 
between the World Bank and ESA EO4SD 
Urban project to promote urban green growth. 
An example map of Green and Open (GOA) 
areas is shown here for one of the pilots - 
Dhaka, Bangladesh.

policies and programs, for the 
Bank operations to assist cities 
with strategic advice and inputs to 
public spaces; 

(iii) �Gain a better understanding of 
the state and problems of urban 
public spaces, focusing on selected 
cities, and to identify future 
investments and implementation 
strategy;

(iv) �Provide a platform for related 
knowledge exchange and policy 
dialogue with practitioners, 
academics, and clients.

As part of this program, the 
UrbanScapes multidisciplinary team 
cooperated with GISAT – a remote 
sensing company, on developing a 
series of analytical projects focused 
on characterizing land use and 

identification of public municipal 
assets (e.g. public spaces) using high 
resolution satellite imagery, and to 
better define intervention areas during 
project preparation. The EO part of 
the project is supported by the EO4SD 
(Earth Observation for Sustainable 
Development) ESA initiative and 
builds on previous successful ESA-
World Bank collaborations. These 
joint projects aim to achieve a step 
change in the use of satellite-based 
environmental information in the 
World Bank’s regional and global 
programs. Although the project is 
being piloted at two locations in the 
preparation phase, there is potential 
for streamlining the approach to 
future World Bank UrbanScapes 
projects (Lee, 2018).
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Indicators 11.7.1
Average share of the built-up 
area of cities that is open 
space for public use for all, 
by sex, age and persons with 
disabilities

11.7.2
Proportion of persons 
victim of physical or sexual 
harassment, by sex, age, 
disability status and 
place of occurrence, in the 
previous 12 months

Custodian agency UN-Habitat UNODC

Tier II II

Status of step-by-step methodology document on 
the metadata repository

Work plan only
Not published
(Tier III at the time of the 
analysis)

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

EO is useful to map open and 
green spaces within urban 
areas. EO is very limited 
in mapping socioeconomic 
variables associated with this 
indicator.

Not supported by EO
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Target 13.1
Strengthen resilience and adaptive capacity to climate-
related hazards and natural disasters in all countries

How can EO be used to help countries achieve the target?

This target is complementary to the global targets of the 
Sendai Framework for Disaster Risk Reduction, specifically 
targets A and B. The definition of hazard, according to 
the open-ended intergovernmental expert working group 
of the UNISDR (United Nations Office for Disaster Risk 
Reduction (UNISDR) and United Nations General Assembly 
(UNGA), 2016), is “a process, phenomenon or human 
activity that may cause loss of life, injury or other health 
impacts, property damage, social and economic disruption 
or environmental degradation”. Hazards may be natural, 
anthropogenic or socio-natural in origin. 

EO can be used by countries in two ways, both in planning 
for the target, though a more robust system of identifying, 
monitoring and preparing for climate related hazards and 
natural disasters and in achieving the target, through 
improved resilience to disasters through ecosystem-based 
adaptation strategies. For the former, EO is a powerful 
monitoring technology to track natural, anthropogenic 
or socio-natural hazards on the land or sea surface. 
Populations in the path of disasters can be prepared and 
alert to disasters before they occur if EO is used effectively 
in an early warning system, e.g. in tracking hurricanes 
approaching coastlines, tracking wildfires near human 
settlements or in detecting terrain movements prior to 
volcanic eruptions.  For the latter, strengthening resilience 
and adaptive capacity to disasters requires longer term 
planning. Ecosystem-based approaches to climate change 
adaptation are included in many disaster risk reduction 
strategies as they provide a natural buffer to hazards 
while providing other ecosystem services to surrounding 
communities. EO is useful as a national planning tool 
for the target in ecosystem-based adaptation to natural 
disasters because it can map the extent of such ecosystems 
as well as potential areas for increasing the extent and 
composition of these ecosystems to strengthen resilience. 
For example coastal ecosystems such as mangroves are 
readily mapped through EO and can be conserved and 
resorted to strengthen resilience to coastal hazards such 
as storm surges and wave damage. 

Current Indicator(s):

13.1.1 �Number of deaths, missing persons and directly 
affected persons attributed to disasters per 100,000 
population

13.1.2 �Number of countries that adopt and implement 
national disaster risk reduction strategies in line 
with the Sendai Framework for Disaster Risk

13.1.3 �Proportion of local governments that adopt and 
implement local disaster risk reduction strategies in 
line with national disaster risk reduction strategies

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 13.1.1

Computation method

The relevant global indicators for the Sendai Framework will 
be used to report for this indicator.

Indicator 13.1.1. is calculated as a summation of related 
indicators (deaths, missing people, and affected people) 
from national disaster loss databases, divided by the total 
population of the area concerned, derived from relevant 
global or national databases (e.g. World Bank or UN Statistics 
information). Affected people, whether directly or indirectly, 
are defined as those that “experience short-term or long-
term consequences to their lives, livelihoods or health and 
to their economic, physical, social, cultural and environmental 
assets. In addition, people who are missing or dead may 
be considered as directly affected” (United Nations Office for 
Disaster Risk Reduction (UNISDR) and United Nations General 
Assembly (UNGA), 2016). 

Although EO is not mentioned as a potential source of data for 
the indicator, an EO-based approach could be used to estimate 
the extent of area impacted by the disaster from which the 
impact to “physical or economic assets” could be inferred, 
according to the UNISDR definition above.  Census data would 
be required for the area’s population while counting in-situ 
the number of deaths, missing persons and directly affected 
persons. To be consistent with the indicator, a conclusion on 
the number of affected persons would have to account for 
those indirectly and directly affected by the disaster. For this 
distinction, the UNISDR proposes the estimation of “directly 
affected” as a proxy for the number of affected. Directly 
affected are those “People who have suffered injury, illness 
or other health effects; who were evacuated, displaced, 
relocated or have suffered direct damage to their livelihoods, 
economic, physical, social, cultural and environmental assets”. 
This could be feasibly estimated by overlaying a population 
density map on a disaster zone map derived from high to very 
high resolution EO data, perhaps stratifying zones into areas 
with the highest to the lowest impact based on variables 
for proximity to the disaster, vegetation cover, slope and 
topographic factors etc. Clearly, the type of disaster would 
determine the parameterisation of such a model. 

There are also limits to the type of disaster that could 
be monitored with EO but the main applications would 
be in earthquakes, in particular using SAR interferometry 
for ground motion detection, e.g. from Sentinel-1  (ESA, 
2015, 2018b), COSMOS-Skymed or TerraSAR-X data; 
Sentinel-1  for floods (Twele et al., 2016) and tropical 
cyclones/storm surges (Guo, 2010). Newer applications 
have shown the potential of EO for monitoring dangerous 
heat waves (or urban heat islands) , e.g. from MODIS Land 
Surface Temperature (Clinton & Gong, 2013) and dangerous 
emissions from natural sources such as wildfires (Zielinski 
et al., 2016) and volcanoes (Prata et al., 2015). Other 
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disasters that could be directly monitored with EO are 
wildfires (ESA, 2018a), industrial fires, drought (Sinergise, 
2018), ice (sea ice and icebergs), landslides (Casagli et al., 
2016), oil spills and volcanoes (Rothery, 1992; CEOS, 2015).

Limitations

Use of multi-sensor/satellite information will introduce 
errors and potentially gaps where certain sources of imagery 
don’t exist.  There are limitations on the use of remotely 
sensed EO data for landslide studies including the high cost 
of VHR imagery for detailed geomorphologic mapping and 
the size of ground deformations in relation to the capacity 
of radar interferometry to detect motion. The use of polar 
and geostationary orbiting weather satellites for volcano 
monitoring (ash clouds, toxic emissions, heat etc.) is limited 
by cloud cover (meteorological cloud as well as volcanic 
cloud), reduced capability at night and limited ability to detect 
small-scale events (meteorological satellites have very coarse 
resolutions >1km) (Rothery, 1992). In addition the polar 
regions have less coverage than the rest of the planet. 

Key messages for countries on EO contribution to the 
computation method: 

• �There are a wide variety of disaster impacts which EO can 
monitor, especially those that produce material damage, 
such as earthquakes and hurricanes. Longer-term, slower 
onsets disasters such as urban heat island impacts and 
drought can be monitored remotely but their impact is less 
easily quantified. 

• �This indicator requires a quantification of the number of 
directly affected people as well as deaths and missing 
persons. For these accurate head counts are required which 
cannot be readily by EO methods. 

• �However EO can be used to map the extent and intensity 
of impact of the affected area and theoretically population 
density maps could be overlaid to infer the numbers of 
those directly affected by a disaster while missing person 
would remain unquantifiable.

• �Even with an EO-based method, for accurate reporting of 
this indicator, ground based methods would still be needed 
to count the numbers of persons in the different categories 
within and around the disaster zone

Data sources

Data category Data sources Website

Software, tools and 
platforms

The ESA Thematic Exploitation 
Platform (TEP) on Geohazards

https://geohazards-tep.eu
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https://earth.esa.int/web/guest/content/-/article/sentinel-1-provides-support-in-taiwan-s-earthquake
https://europa.eu/capacity4dev/unep/blog/ecosystem-based-approaches-disaster-risk-reduction-and-climate-change-adaptation
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Indicators 13.1.1

Number of deaths, 
missing persons 
and directly affected 
persons attributed 
to disasters per 
100,000 population

13.1.2

Number of 
countries that 
adopt and 
implement national 
disaster risk 
reduction strategies 
in line with the 
Sendai Framework 
for Disaster Risk

13.1.3

Proportion of local 
governments 
that adopt and 
implement local 
disaster risk 
reduction strategies 
in line with national 
disaster risk 
reduction strategies

Custodian agency UNISDR

Tier II II II

Status of step-by-step methodology document 
on the metadata repository

Published Published
Not published
(Tier III at the time 
of the analysis)

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status of EO in indicator 
guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in 
the EO record?

Overall EO relevance

Comments to support criteria

Number of directly 
affected people could 
be inferred from 
EO-based maps of 
the extent of affected 
area in combination 
with population data

Not supported by 
EO

Not supported by EO



GOAL 14
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Target 14.1

By 2025, prevent and significantly reduce marine pollution 
of all kinds, in particular from land-based activities, 
including marine debris and nutrient pollution

How can EO be used to help countries achieve the target?

This target addresses the need to reduce marine pollution 
by recognising the land-based sources that emit pollutants 
such as nutrients and plastic debris. It is therefore an 
interconnected target that seeks to join land and sea 
based approaches to pollution reduction and prevention.  
In setting a deadline for achievement of this target by 
2025, the community must act quickly towards global 
pollution reduction. EO is useful in relation to this target 
because it has both land, sea and coastal coverage thereby 
enabling integrated monitoring, e.g. of land based debris 
which accumulates on shorelines before being transported 
seaward. Equally, EO can monitor the location and extent 
of inland waterways, including their water quality as 
mentioned in relation to SDG 6, enabling the transport of 
land based, water-dissolved pollutants such as excessive 
nutrients to be monitored. At sea, the detection of surface, 
coarse marine debris is an experimental area for EO but 
with increasing sophistication this technique could yield 
results in being able to map large debris fields and plot 
their movement for subsequent intervention and clean up. 
Evaluation of coastal eutrophication status, anomalies and 
trends is a challenging but evolving application of EO and 
contributes to the land-based pollution reduction aspect of 
this target. 

Current Indicator(s) 

14.1.1 �Index of Coastal Eutrophication and floating plastic 
debris density

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 14.1.1

Computation method

Due to the complexity of this indicator, the methodology 
will be divided into multiple primary and secondary sub-
indicators. The data for the sub-indicators will be based on 
two levels of data:

1. �Global level data derived from satellite 
observations, and 

2. National and regional in situ data. 

The identification and development of secondary sub-
indicators is currently in progress. Information about two 
potential sub-indicators is outlined below. 

Sub-Indicator 1: Index of Coastal Eutrophication
Provisional sub-indicator 1.1: Surface water chlorophyll 
a as a proxy for phytoplankton biomass (chlorophyll a 
trends, anomalies and annual maximum) 

Sub-Indicator 2: Floating plastic debris density
Provisional sub-indicator 2.1: Beach litter

14.1.1 Provisional sub-indicator 1.1: Surface Chlorophyll-a 
concentration as an indicator of phytoplankton biomass

Chlorophyll-a is a pigment contained in plants, algae 
and phytoplankton that provides a proxy indicator for 
eutrophication. It can be measured by EO using ocean 
colour radiometry sensors. Data on Chlorophyll-a is 
freely accessible on a number of data portals, data 
bases and satellite missions (see data sources) (ESAa, 
2018). These data sources can be used to identify 
satellite Chlorophyll-a data for the national waters under 
consideration but the use of the satellite Chlorophyll-a for 
reporting on this indicator is restricted because current 
methods are designed for open ocean applications. As a 
result they produce spurious results in optically complex 
coastal (and inland) waters (see limitations section). 

Chlorophyll-a trends should be monitored due to 
seasonal changes in phytoplankton growth, rainfall and 
oceanographic processes that impact surface nutrient 
concentrations such as upwelling and stratification. 

To use Chlorophyll-a as a proxy for eutrophication, national 
Chlorophyll-a eutrophication threshold levels have to be 
defined (i.e. the Chlorophyll-a levels in μg l-1 at which 
eutrophication occurs in national waters). However, due 
to the uncertainties inherent in EO retrievals, it would be 
more realistic for this to be a percent change over time 
of Chlorophyll-a concentrations rather than a specific ug/l 
value.   These can be calculated using historical data, 
modelling outputs and expert judgement. Historical data 
for satellite-remote sensing derived Chlorophyll-a levels 
is available (see data sources).

To determine Chlorophyll-a concentrations, the satellite 
data should be analysed using appropriate algorithms for 
the prediction of apparent optical properties of coastal 
waters, as shown in a study by Zheng & DiGiacomo 
(2017). Initial in-situ measurements are required to 
ground truth these algorithms. A number of software 
packages, online toolboxes and web portals are available 
to support the processing and analysis of satellite data 
(see data sources). Chlorophyll-a concentrations will 
need to be compared to time series data to identify 
trends. Chlorophyll-a anomaly data can also serve as 
a proxy for harmful algal bloom occurrence/potential 
eutrophication. This can be done for representative 
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water bodies which are then monitored and statistical 
indicators are generated per water body, as per the 
approaches of the EU’S Water Framework and Marine 
Strategy Framework Directives.

14.1.1 Sub-indicator 2: floating plastic debris density, 
and provisional sub-indicator 2: beach litter

Floating plastic in coastal areas could be observed using 
optical data (e.g. Sentinel-2 and Landsat 7/8), with the 
caveat that the resolutions will be max 10m (for Sentinel-2) 
and 30m (for Landsat), indicating that only large (>10m) 
floating plastic and/or beach litter can be observed and 
even still with large uncertainties. Therefore it is currently 
impossible to implement a robust monitoring strategy for 
marine plastic debris using direct EO measurements. 

However one potential application which is currently being 
explored is the identification of distinct spectral signature 
of plastic picked up from Sentinel-2 SLSTR and Sentinel-3 
OLCI data. In addition the Research & Development 
domain is working on a new generation of multi to hyper 
spectral near infrared (NIR) & short wave infrared (SWIR) 
sensors which are able to pick up the spectral signature 
of micro plastic in the sea.  These two latter activities, 
together with detailed observation of the ocean dynamics 
in boundary habitats such as frontal zones (known to be 
hot spots of surface polymer aggregation), could eventually 
enable the monitoring of the floating plastic debris 
density indicator. However these technologies are not yet 
operational.  As an alternative solution, efforts should focus 
on a robust characterization of the cycle of marine plastic, 
with EO being used to measure parameters at key points in 
the cycle where it is most suited. For example, one of the 
main entry points for plastic waste is rivers. However this 
requires an assumption of the percentage of total waste 
that is plastic. EO data could then inform models of river 
discharge, as suggested for indicator 6.6.1 (sub-indicator 
3), form which plastic volume supplied to oceans could be 
inferred. 

Chlorophyll-a data can be obtained from a number of optical 
satellite missions, including:

Sentinel-2 MSI1 	� EU Copernicus satellite, supporting land 
and monitoring studies, including the 
monitoring of vegetation, soil and water 
cover, as well as observation of inland 
waterways and coastal areas.

Sentinel-3 OLCI	� EU Copernicus satellite(s), launched 
by ESA (European Space Agency) and 
operated by EUMETSAT (European 
Organisation for the Exploitation of 

1 Some combination of S2 and S3 is needed – S2 channels are 
not optimized for Chlorophyll-a retrieval but S2/S3 fusion can en-
able extension of S3 measurements into areas requiring higher 
resolution data such as estuaries and lagoons	

Meteorological Satellites). Data available 
from 2016. Global coverage, max 
spatial resolution 300m, orbit cycle 27 
days. Currently 1 satellite but shortly 
become a constellation of 2. The two 
in-orbit SENTINEL-3 satellites enable 
a short revisit time of less than two 
days for OLCI (Ocean and Land Colour 
Instrument).

ASTER-Terra	� NASA satellite carrying the Advanced 
Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER). Global 
coverage. Data available form 1999.

MODIS-Aqua	� NASA satellite carrying a Moderate 
Resolution Imaging Spectroradiometer 
(MODIS). Global coverage, max spatial 
resolution 300m. Data available from 
2002.

Landsat 8	� NASA satellite. Launched in Feb 2013. 
Carrying the Thermal Infrared Sensor 
(TIRS) with 100m spatial resolution, 
and the Operational Land Imager (OLI) 
with 30m spatial resolution.

	
Archive satellite data sources:

SeaWiFS	�Sea-Viewing Wide Field-of-View Sensor. NASA 
satellite, no longer operational. Global coverage, 
spatial resolution 1.1km, historical data are 
available covering the period 1997-2010.

CZCS	� Coastal Zone Color Scanner. NASA satellite, no 
longer operational. Global coverage, max spatial 
resolution 800m, historical data available covering 
period 1978-1986. 

Treatment of missing values

Missing values (e.g. due to cloud cover) can be estimated 
using models (hydrodynamic or mathematical gap filling 
procedures). In the absence of modelling, statistical 
measures could be taken, e.g. of monthly and seasonal 
average of the water body. This would ensure issues such 
as missing pixels are effectively corrected for and enable 
the compilation of year on year relative changes

Sources of discrepancies

For 14.1.1 (sub-indicator 1), remote sensing sensors detect 
Chlorophyll-a based on its absorption signal, meaning that 
a constant value between absorption and concentrations 
(called specific absorption coefficient) is assumed. However 
each phytoplankton species are present in different 
oceans and seas, resulting in distinctly different bloom 
seasons in many waterbodies. This requires different 
specific absorption coefficients, depending on the coastal 
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setting. This modification of the coefficients for different 
groups of phytoplankton species could introduce unwanted 
discrepancies when comparing Chlorophyll-a retrievals at 
the global level. 

Limitations

For 14.1.1 (sub-indicator 1), the availability of ocean colour 
data from optical satellite imagery is dependent on the 
absence of clouds. However this is less of a problem than 
for other surface parameters as algal bloom growth is 
slower in cloudy conditions due to the lower light intensity. 
Nevertheless, a merged multi-sensor satellite remote 
sensing Chlorophyll-a dataset is available, covering the 
period 1997 to now. The sensors included in this merged 
product are: SeaWIFS, MERIS, MODIS, VIIRS and OLCI-A. 
Where data gaps exist, these can be filled by modelling or 
estimates based on data aggregates.

The achievable accuracy of the estimation of chlorophyll 
from optical satellite imagery depends greatly from the type 
of waters considered. In a most common classification, sea 
waters are classified as Case 1 and Case 2 waters (Morel 
& Bélanger, 2006). Case 1 waters belongs mostly to open 
sea areas or to oligotrophic coastal areas, in such areas the 
accuracy that can be achieved by EO data is very high. Case 
2 waters are sediments dominated waters: for such waters 
the challenge is to separate the contribution to the measured 
signal of the water turbidity and of the atmosphere, and 
within the former to distinguish the component related to 
the chlorophyll (phytoplankton). Different algorithms exist 
which rely on different approaches to measure chlorophyll 
for Case 2 waters (for example, Moses et al., 2009) and in 
most cases while it is difficult to measure absolute values 
of chlorophyll with high accuracy, it is possible to find/
evaluate trends and anomalies. For both Case 1 and Case 
2 algorithms, the availability of reliable in situ measures/
sampling to be used for calibration and validation is 
essential to achieve a high accuracy in the chlorophyll 
measurement.

Without measurement of further eutrophication parameters, 
it is not possible to determine whether Chlorophyll-a 
concentrations are linked to an (anthropogenic) increase in 
nutrients. Therefore, where possible, Chlorophyll-a should 
be supplemented by monitoring further eutrophication 

parameters, by means of traditional at sea sampling/
measurements and/or by using of models which are able to 
merge different information (also satellite ones) to predict 
with good accuracy values of parameters like nitrates or 
dissolved oxygen. In addition, for many coastal areas it 
is necessary to understand the local ocean conditions 
(currents, temperature etc.) to understand what is driving 
Chlorophyll-a concentration variations.

For 14.1.1, (sub-indicator 2), there are serious limitations to 
what is possible to directly measure from EO. Therefore, as 
the bulk of marine plastic debris at sea originates on land, 
EO methods will focus on quantifying the land contribution 
of plastic debris, e.g. through river outflow.

Key messages for countries on EO contribution to the 
computation method 

• �This indicator is composed of two sub-indicators, on 
coastal eutrophication and floating plastic debris, for 
which provisional sub-indicators have been agreed until 
the sub-indicator methodologies have been finalised, due 
for roll-out by 2021.

• �The agreed indicator for 14.1 is the Index of Coastal 
Eutrophication (ICEP); the ICEP methodology is currently 
being developed; it is based on concentrations and ratios 
of nitrogen, phosphorous and silica, which currently 
cannot be directly measured by remote sensing.

• �The provisional sub-indicator 1 methodology, based on 
chlorophyll-a, does mention EO as a possible source of 
data. Furthermore, eutrophication can also be monitored 
remotely through images of harmful algal blooms and 
coloured dissolved organic matter.

• �In coastal and inland waters chlorophyll-algorithms and 
methods are all experimental and site specific. There 
is no global and universally applicable EO method for 
Chlorophyll-a in the coastal zone.

• �Many countries do not have validation data for satellite 
chlorophyll and absolute values of Chlorophyll-a (ug/l) 
will not be accurate. Hence a % change measure is 
recommended to report on the indicator. 

Data sources

Data category Data sources Website

Source satellite data

Landsat 8 https://earthexplorer.usgs.gov/  

Sentinel data (1,2 and 3) from 
the Copernicus Open Access Hub

https://scihub.copernicus.eu/

ASTER-Terra http://asterweb.jpl.nasa.gov/ 

MODIS-Aqua & Terra https://oceancolor.gsfc.nasa.gov/

SeaWiFS https://oceancolor.gsfc.nasa.gov/data/seawifs/ 

CZCS https://oceancolor.gsfc.nasa.gov/data/czcs/ 
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Data category Data sources Website

Software, tools and 
platforms

SeaDas (National Aeronautics and 
Space Administration)

https://seadas.gsfc.nasa.gov/

Coastal Thematic Exploitation 
Platform

https://www.coastal-tep.eu/portal 

Sentinel Application Platform 
(SNAP) 

http://step.esa.int/main/toolboxes/snap/

Ocean Virtual Laboratory https://ovl-project.oceandatalab.com/home 

Global Marine Information 
System

https://ec.europa.eu/jrc/en/scientific-tool/global-marine-infor-
mation-system

NOAA (National Oceanic and 
Atmospheric Administration) 
CoastWatch/OceanWatch

https://coastwatch.noaa.gov/cw_html/index.html

NASA (National Aeronautics and 
Space Administration) OceanColor 
Web

https://oceancolor.gsfc.nasa.gov/data/overview/

ChloroGIN data portal www.chlorogin.org/index.php

GlobColour http://www.globcolour.info

Operational or 
commercial services

Copernicus Marine Environment 
Monitoring Service (CMEMS)

http://marine.copernicus.eu

NASA Ocean Color https://oceancolor.gsfc.nasa.gov/

https://ec.europa.eu/jrc/en/scientific-tool/global-marine-information-system
http://mcc.jrc.ec.europa.eu/documents/OSPAR/Eutrophication_MonitoringGuidelinesch_%20a.pdf
http://www.vliz.be/imisdocs/publications/119746.pdf
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/applications/maritime-monitoring
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In Italy the Ministry for the protection 
of Environment and Sea (MATTM) is 
responsible to provide law directives 
for the SDG 14.1. For indicator 14.1.1, 
related to coastal eutrophication, 
the adopted benchmark values 
are those indicated by the Italian 
implementation of the European 
Marine Strategy Framework Directive 
(MSFD) through the legislative decree 
D.lgs 190/2010.

In particular the ministerial decree 
D.M. of 17/10/2014 specifies the 
environmental targets to determine 
the Good Environmental State (GES) 
and the following ministerial decree 
D.M. of 11/2/2015, identifies the 
specific indicators to be measured 
to evaluate coastal eutrophication. 
In this way chlorophyll and nitrates 

Reporting on coastal eutrophication in the Italian coastal zone using EO, 
in support of indicator 14.1.1
 

Figure 17: Geometric means of Nitrates concentration (left) and Chlorophyll-a concentration (right) for the years 2004-2009 obtained using products 
from the Copernicus Marine Environment Monitoring Service (former MyOcean) over the Italian coasts.
Credit: The Italian position with respect to the 17 SDGs http://www.minambiente.it/sites/default/files/archivio/allegati/sviluppo_sostenibile/
posizionamento_Italia_SDGs_3.1_16012017_2.pdf

concentrations have been adopted as 
key parameters for 14.1.1

Current practice is based on in 
situ measurements and samplings 
performed regularly (usually monthly 
or bi-monthly) by local environmental 
authorities. Even if some pilots 
services have been implemented 
for evaluating the use of Earth 
Observation data for the MSFD (in 
particular chlorophyll and turbidity), 
currently it is not routinely employed 
in the measurement of chlorophyll 
due to these limitations: poor 
spatial resolution of existing satellite 
missions dedicated to measurement 
of ocean colour (ranging from 300m 
to few kilometres) and the lack of an 
extensive validation over the Italian 
territory. A promising improvement 

is currently being provided by 
hydrological and ecosystem models 
that merges different kinds of 
satellite data and (when) available 
in situ measurements to scale down 
the former and enrich the water 
parameters that can be evaluated. 
Some implementations based on 
models can be found in the Copernicus 
Marine Environment Monitoring 
Service (see data sources), which 
provides measurements of nitrates 
and chlorophyll. Such products 
have been used by ISPRA (Superior 
Institute for the Environmental 
Protection and Research) to obtain 
qualitative synergic views over the 
Italian coasts (see Figure 17), but 
they are not used as official sources 
mainly due to their coarse spatial 
resolution.
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Indicators 14.1.1 Sub-Indicator 1: 
Index of Coastal 
Eutrophication

Provisional 
Sub-
Indicator 
1.1: 
Surface 
water 
chlorophyll

Sub-Indicator 2: 
Floating plastic 
debris density

Provisional Sub-
Indicator 2.1: Beach 
litter

Custodian agency UN Environment

Tier II II n/a II n/a

Status of step-by-step 
methodology document on the 
metadata repository

Unpublished
(Tier III at 
the time of 
the analysis)

Unpublished
(Tier III at 
the time of the 
analysis)

n/a

Unpublished
(Tier III at 
the time of the 
analysis)

n/a

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status of EO 
in indicator 
guidelines

n/a

Technical capacity 
required

Availability of  
global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with 
Reporting calendar

n/a n/a n/a

Sensitivity to 
change

Is it scalable 
(spatial)?

Is there a 
substitute for 
gaps in the EO 
record?

Overall EO relevance

Comments to support criteria

See primary 
sub-indicators 
and provisional 
secondary sub-
indicators for 
assessment

EO is applicable 
to this sub-
indicator

EO is mentioned 
as a potential 
data source 
in the work 
plan for this 
sub-indicator; 
however, the EO 
methodology 
for measuring 
floating 
plastic debris 
density is still 
experimental.

This is being 
considered as a sub-
indicator that is used 
provisionally while 
the methodology for 
floating plastic debris 
density is under 
development.
EO methodology for 
measuring beach litter 
is still experimental.
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Target 14.3

Minimize and address the impacts of ocean acidification, 
including through enhanced scientific cooperation at all 
levels 

How can EO be used to help countries achieve the target?

As the ocean’s biology and biochemistry is largely under 
sampled, this target presents a significant challenge for 
countries hence the stated need to enhance scientific 
cooperation at all levels. Nevertheless, this enhanced 
scientific cooperation should involve the remote sensing 
community, at least at the target level. For instance, EO 
can support countries in planning for and setting targets on 
minimising ocean acidification, as part of a wider climate 
change monitoring/management strategy. EO could help 
countries with significant marine areas to identify areas 
at risk from acidification and estimate their extent, e.g. of 
waters with aragonite close to its saturation level, below 
which organisms find it more difficult to form and retain 
their shells. EO can also be used as a diagnostic tool, e.g. to 
map the impacts of ocean acidification on coral reefs. The 
utility of the satellite measurements comes in obtaining a 
synoptic view where few or no in situ measurements of the 
carbonate system exist. Although EO is limited to the ocean 
surface layer, these observations are important because 
the change in carbonate chemistry due to atmospheric CO2 
occurs in the ocean surface first. 

Current Indicator(s) 

14.3.1 �Average marine acidity (pH) measured at agreed 
suite of representative sampling station

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 14.3.1

Computation method

Indicator 14.3.1 adopts the International Panel on Climate 
Change (IPCC) Workshop on Impacts of Ocean Acidification 
(OA) on Marine Biology and Ecosystems definition of OA as 
“a reduction in the pH of the ocean over an extended period, 
typically decades or longer, which is caused primarily by 
uptake of carbon dioxide from the atmosphere, but can also 
be caused by other chemical additions or subtractions from 
the ocean.” The indicator computational method is based on 
an in-situ sampling strategy in order to calculate the mean 
(monthly or annual) surface seawater pH and aragonite 
saturation state, based on ocean acidification observations. 
These observations must include: two parameters of the 
carbonate system (Dissolved Inorganic Carbon, total pH, 
pCO2, and total alkalinity), in situ seawater temperature, 
salinity, as well as relevant metadata, to be measured 
at an agreed suite of representative sampling stations. 

An agreed suite of representative sampling stations are 
sites that: 1) have a measurement frequency adequate to 
describe variability and trends in carbonate chemistry to 
deliver critical information on the exposure of and impacts 
on marine systems to ocean acidification, and 2) provide 
data of sufficient quality and with comprehensive metadata 
information to enable integration with data from other 
sites in the country. 

Although EO is not mentioned in the work plan, satellites 
such as NASA’s Aquarius (no longer operational), NASA’s 
salinity sensor SMAP, and ESA’s SMOS can measure ocean 
salinity globally. Coupled with EO-derived sea surface 
temperature (SST) measurements and surface chlorophyll-a, 
pH can be estimated using the empirical relationship 
derived from in-situ data. As EO based estimation of 
ocean acidity is reliant upon in-situ data observations, EO 
based methods cannot replace the need for in-situ data 
collection, however it could be used to derive spatially 
explicit datasets. Furthermore the utility of the EO-based 
method could be useful for identifying regions at risk from 
OA and the study of complex systems challenging for in 
situ monitoring such as river plumes and upwelling areas.
The Copernicus Marine Environment Monitoring service 
(CMEMS) is launching a new product on Ocean Health in 
April 2019, which includes Ocean Acidification. The pH 
estimates in this product relies on in situ data from buoys, 
EO data on SST and salinity, auxiliary data on nitrate and 
dissolved silica and combines this within a modelling 
environment. The exact details of the product and accuracy 
assessments are not currently available. 

Limitations

The EO algorithms in their current state have quite large 
uncertainties, unless at relatively coarse spatial resolutions, 
rendering them unsuitable for detecting fine-scale changes 
in pH expected from OA. The current proposed methodology 
requires that sample station observations must include: 
two parameters of the carbonate system (Dissolved 
Inorganic Carbon, total pH, pCO2, total alkalinity) and in situ 
seawater temperature and salinity. However only direct EO-
based observations of salinity and sea surface temperature 
are currently feasible. The indicator methodology would 
have to be adapted to incorporate these observations 
globally while still relying on carbonate parameters from 
sampling stations. As salinity and temperature can be 
sampled relatively simply in-situ the use of EO-derived 
salinity and temperature from space is really in broad scale 
ocean acidification mapping, e.g. over a square kilometre or 
more. The utility of the satellite measurements therefore 
comes in obtaining a synoptic view where few or no in situ 
measurements exist (as mentioned in the introduction for 
target 14.3).
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Key messages for countries on EO contribution to the 
computation method:

• This indicator methodology uses an ocean in-situ 
(buoys and ships) sampling approach for key parameters 
of importance for ocean pH in order to determine average 
pH from which anomalous deviations could indicate an 
acidification risk

• �The methodology does not currently mention EO as a 
data source but models of global ocean acidification 
risk, inferred from EO derived salinity and sea surface 
temperature measurements (and possibly chlorophyll-a). 
These together with empirical algorithms to estimate 
carbonate system parameters, have been used to map 
OA risk, albeit at coarse spatial resolution (>1km) and 
with large uncertainties

• �EO is therefore not yet ready for the precise monitoring 
required for the indicator but as EO based methods 
improve, there is a possibility that it could therefore 
become integrated into future iterations of the 
methodology, especially if enhanced scientific cooperation 
(between modellers, remote sensing experts and ocean 
scientists) is achieved in line with target 14.3

• �The upcoming product from CMEMS on Ocean Acidification 
will allow easy access to updated data based partly 
on EO inputs. The accuracy of the product for national 
reporting should be evaluated before being used for SDG 
indicator reporting. 

Data sources

Data category Data sources Website

Source satellite data

ESA Soil Moisture and Ocean 
Salinity (SMOS)

https://smos-diss.eo.esa.int/oads/access

NASA Aquarius (no longer oper-
ational but a source of historical 
data):

https://aquarius.nasa.gov/data.html

NASA Soil Moisture Active Pas-
sive (SMAP)

Meissner, T. and F. J. Wentz, (2016) Remote Sensing Systems 
SMAP Ocean Surface Salinities Level 3, Version 2.0 validat-
ed release. Remote Sensing Systems, Santa Rosa, CA, USA. 
Available online at www.remss.com/missions/smap, doi: 
10.5067/SMP20-3SMCS

Operational products
Copernicus Marine Environment 
Monitoring Service - Ocean 
Health Monitoring Indicator

http://marine.copernicus.eu/science-learning/ocean-monitor-
ing-indicators/catalogue
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Indicators 14.3.1
Average marine acidity (pH) measured at agreed suite of 
representative sampling station

Custodian agency IOC-UNESCO

Tier II

Status of step-by-step methodology document on 
the metadata repository

Unpublished
(Tier III at the time of the analysis)

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status of EO in indicator guidelines n/a

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

EO algorithms for direct estimation of OA/pH have quite large 
uncertainties rendering them unsuitable for operational use, 
but EO products on salinity and SST are mature and are used 
in the CMEMS OA product. 
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Target 14.4

By 2020, effectively regulate harvesting and end 
overfishing, illegal, unreported and unregulated fishing 
and destructive fishing practices and implement science-
based management plans, in order to restore fish stocks 
in the shortest time feasible, at least to levels that can 
produce maximum sustainable yield as determined by their 
biological characteristics

How can EO be used to help countries achieve the target?

This target is aimed at regulation through consistent 
reporting of overfishing as well as restoration of already 
depleted fish stocks. The most conservative estimates 
suggest that illegal, unreported and unregulated (IUU) 
fishing on the high seas, affecting species such as tunas 
and sharks, is worth US$1.25 billion annually (Global 
Ocean Commission, 2014). Current measures taken 
for implementing, monitoring and enforcing plans for 
fish stock conservation at the national level are mostly 
inadequate.  Satellite remote sensing has the potential to 
improve plans for monitoring and management of fisheries 
in a number of ways (Stuart et al. 2011a). For example 
satellite data on ocean parameters such as temperature, 
salinity, phytoplankton and chlorophyll-a concentrations 
can help identify ocean areas where fish tend to aggregate 
(e.g. thermal fronts) and to estimate primary production. 
Studies have shown that satellite remote sensing of 
primary production in the ocean could be used to support 
fish stock assessments, for example, using ocean colour 
images to infer primary production and estimate global 
fish biomass. This would be particularly useful for this 
target given that the fish stock assessments demand high 
levels of technically capacity and data, which is currently 
lacking at country level. However, the uptake of satellite 
remote sensing in fisheries management has so far been 
limited. This is due to a number of reasons, including the 
spatial and temporal inadequacy of available ocean colour 
data for fisheries management purposes, lack of technical 
capacity to analyse remote sensing data sets, and the 
limited accuracy of ocean colour algorithms for coastal 
areas, where most fishing activities take place (Stuart et 
al. 2011b, Wilson 2011).

Current Indicator(s) 

14.4.1 �Proportion of fish stocks within biologically 
sustainable levels

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 14.4.1

Computation method

The indicator measures the sustainability of fishery 
resources based on stock assessments (fish catch statistics, 
fishing effort, biological information, population dynamics 
models. The methodology is very well established and FAO 
has maintained and reported on this indicator since 1974.  
Yet; satellite remote sensing data can support fish stock 
assessments over vast areas of the ocean both within and 
outside national waters through estimates of ocean primary 
productivity. Non-EO data such as tracking fishing vessel 
movements could be used to strengthen the estimate of 
over fishing in areas of high primary productivity. 

Limitations

The accuracy of ocean colour algorithms for coastal areas is 
limited, where most fishing activities take place.

Key messages for countries on EO contribution to the 
computation method 

• �Unregulated and unlicensed fishing is causing extreme 
pressure on global fish stocks as well as lost revenue 
for countries

• �This indicator reports on the proportion of fish stocks 
within biologically sustainable levels

• �It is using a tried and tested statistical methodology

• �EO can however help improve estimates of fish socks 
especially in open ocean, based on the levels of ocean 
primary productivity inferred form measurements of 
ocean colour

• �Areas of high primary productivity generally support 
higher fish stocks than area of lower productivity

• �Non-EO data such as illegal fishing vessel movement 
tracking can be used to complement EO data and in order 
to identify where fish stocks are being unsustainably 
depleted, e.g. by overlaying on areas of high primary 
productivity or on zones where fisheries are protected
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Indicators 14.4.1
�Proportion of fish stocks within biologically sustainable levels

Custodian agency FAO

Tier I

Status of step-by-step methodology document on 
the metadata repository

Unpublished
(Tier III at the time of the analysis)

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

Ocean colour remote sensing technologies are well 
established from which fish stocks can be inferred. Further 
work needed to estimate the sustainability of stocks from 
remote sensing.
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Target 15.1

By 2020, ensure the conservation, restoration and 
sustainable use of terrestrial and inland freshwater 
ecosystems and their services, in particular forests, 
wetlands, mountains and drylands, in line with obligations 
under international agreements. 

How can EO be used to help countries achieve the target?

This target aims to ensure sustainable management and 
monitoring, and use of terrestrial ecosystems including 
freshwater ecosystems and their restoration. It is an 
ambitious target which considers the interrelatedness 
of life in different elements of terrestrial ecosystems - 
mountains, wetlands, arid lands and forests and that the 
health of one part impacts the other. 

EO can play multiple roles in achieving the target as it is a 
crucial part of the monitoring strategies for conservation, 
restoration and sustainable use of terrestrial ecosystems. 
The availability of multi-decadal time series datasets of 
the (global) land surface from multiple satellite sensors 
means that there are fewer remote sensing data gaps 
and greater ability to monitor long term changes over 
greater areas. Multi-scale land-cover information can be 
retrieved over whole countries which, complemented with 
field data, can support integrated land use plans, including 
evaluation of the services provided by terrestrial and 
freshwater ecosystems. Remote sensing data coupled with 
modelling tools can support the identification of priority 
areas for ecosystem services provision that needs specific 
management activities. It can also be used to monitor 
the effectiveness of restoration activities planned for these 
sites or to assess their status over time.  Optical or radar 
sensors, or a combination of the two, can detect not just 
forest cover area, but also other attributes as wetlands, 
lakes and to estimate their biophysical parameters, as well 
as surface and volume measures. 

Existing indicators primarily report on the extent to which 
areas are conserved (15.1.2) or sustainably used (15.1.1), 
therefore, there is a gap for an indicator on the restoration 
of these ecosystems. For example, indicator 15.1.1 only 
includes forest areas – drylands and mountains are 
considered under indicators 15.3.1, 15.4.1 and 15.4.2. 
Similarly, freshwater ecosystems are monitored using 
indicator 6.6.1 – so are not considered under target 15.1. 

EO has a lot of potential here as it can effectively monitor 
land cover change over time with high accuracy both at 
very high to high spatial resolution. The identification of 
terrestrial and inland freshwater ecosystems which have 
been modified by humans paves the way for a tool that 
could identify areas for habitat restoration. Moreover, FAO 
is custodian of these SDGs and will work closely with 
other partners.

Current Indicator(s):

15.1.1 �Forest area as a proportion of total land area

15.1.2 �Proportion of important sites for terrestrial and 
freshwater biodiversity that are covered by protected 
areas, by ecosystem type

Potential new indicator(s) based on EO: 

Proportion of terrestrial and freshwater ecosystems 
restored 

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 15.1.1

Computation method

This indicator is calculated from national data on forest that 
FAO has been collecting since 1946, as part of the Global 
Forest Resources Assessment (FRA). Each country provides 
this data to FAO following a standard format, which 
includes raw data files.  Based on this national data, forest 
statistics are produced and archived in the FAO Statistical 
Database (FAOSTAT). This data is complemented with 
data from the global Remote Sensing survey conducted by 
FAO in conjunction with the European Commission’s Joint 
Research Centre (JRC) for 1990, 2000 and 2010. However, 
in the 2020 FRA the online reporting platform provides 
correspondents with access to global remote sensing 
products via Collect Earth (Bey et al., 2016). 

EO, mostly in combination with ground observations, are 
widely used to produce forest cover maps at the national 
and sub-national level, and thus to determine the proportion 
of land covered by forests. Freely available Landsat satellite 
images at 30m resolutions and Sentinels missions’ data 
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from the European Copernicus programme can be processed 
to generate national, regional or global forest cover maps, 
e.g. as has been done for the Global Forest Change product 
(Hansen et al., 2013). In particular Sentinel-2 mission can 
provide high-resolution imaging (from 10 to 60m resolution) 
for land monitoring, including imagery of vegetation, soil 
and water cover, inland waterways and coastal areas. 

Different land cover classification techniques can be used, 
classifiers such as Random Forest, Gaussian Mixture Model 
classifier, Support Vector Machines or K-Nearest neighbours, 
have been widely used and tested (Noi & Kappas, 2017). 
Validation using ground truth data is a critical final step 
that ensures the accuracy of the final map (Rwanga & 
Ndambuki, 2017). 

Countries can also opt to generate the statistics on their 
national forests based on a sample based approach. 
Therefore, they can use freely available tools such as the 
Collect Earth developed by FAO’s Open Foris initiative (FAO 
Forestry Department), which enables to collect land cover/
land use at point locations using Google Earth imager in a 
user-friendly and easy way. 

Global products, such as the Global Forest Change 
developed by independent laboratories such as the 
University of Maryland’s Global Land Analysis and Discover 
laboratory (GLAD) (Hansen et al., 2013), and by initiatives 
such as the Global Forest Watch, which builds on GLAD 
data, can also be used and aggregated at the country level 
and complemented with field surveys if necessary. These 
products should be validated at the country level in order 
to be used as data for national use. The combination of 
EO based products with reference data not only reduces 
bias, but also provides an estimate of uncertainty for the 
indicator in the form of a confidence interval.

Disaggregation

Disaggregation can be by spatial unit, such as administrative 
districts, or by forest type, but only by broad categories such 
as deciduous, coniferous and mixed forests for example. 
This is because the seasonality of the vegetation within 
these forest types is relatively easy to discriminate with 
time series of satellite imagery. Spatial disaggregation 
requires sufficient reference data and class disaggregation 
is heavily dependent on spectral and phenological 
behaviours of different forest types. It is also important 
that all countries use the same definition of forest (such 
as the FAO definition) – this will allow easier comparison. 
Treatment of missing values

Missing values because of cloud cover can be treated 
using different EO sensor types such as radar (e.g. a new 
algorithms under development using Sentinel-1), using 
ground observations or image composites.

Regional aggregates

Regional aggregation is possible, by disaggregation of a 
global forest product for example, but when the forest 
classification is performed at the national scale, the use 
of different types of EO as well as different techniques 
can hinder the possibility of meaningfully aggregating the 
country products.

Sources of discrepancies

Different definitions of forests across countries can generate 
discrepancies, as well as the use of different products, at 
different resolution across countries. The quality of input 
imagery and training data as well as classification methods 
are also a large source of discrepancy.

Limitations

The definition of forest used (FAO, FRA or other) as well as 
the difficulties in discriminating among land cover types, in 
particular in dry areas, is a limitation in using EO. Moreover, 
if the goal is to map land use, field data or other auxiliary 
data are required. Using optical EO data in cloudy regions 
is challenging and it might require the use of radar data. 
The technical capacity necessary to process images can be 
a limitation in many countries. 

Key messages for countries on EO contribution to the 
computation method: 

• �EO are widely used to report on forest cover extent 
and strong methodologies are established to accurately 
classify forest/non forest areas.

• �Dry forest systems are more difficult to map using optical 
EO data, because can be easily confused with grasslands. 
The use of radar and/or VHR data is preferable for this 
forest type. Radar data should also be used in regions 
characterised by persistent cloud cover.

• �The availability of online platforms and free global data, 
e.g. through Collect Earth, allows countries to easily 
report on forest cover extent, but this should always 
be combined with ground observations to validate and 
improve upon forest cover estimates derived from global 
EO products
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Data sources

Data category Data sources Website

Source satellite data
Landsat data https://earthexplorer.usgs.gov/

Sentinel from the Copernicus Open Access Hub https://scihub.copernicus.eu/

Global/regional 
datasets

Global Forest Watch https://www.globalforestwatch.org/

University of Maryland’s Global Land Analysis 
and Discovery laboratory

https://glad.umd.edu/

Software, tools and 
platforms

Open Foris, of the FAO, a collection of free and 
open source tools for EO-based environmental 
monitoring

http://www.openforis.org

SEPAL: System for Earth Observation Data  
Access, Processing and Analysis for Land  
Monitoring

https://sepal.io 

Forestry TEP https://f-tep.com
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Forest cover maps were produced 
in collaboration with the Gabonese 
Agency for Space Studies and 
Observations (AGEOS) for 1990, 2000, 
2010 and 2015 for the whole country. 
The maps were constructed using a 
combination of a semi-automated 
classification procedure and manual 
enhancements to ensure the highest 
possible level of accuracy. A two-stage 
area frame sampling approach was 
adopted to collect reference data for 
assessing the accuracy of the forest 
cover maps and to produce forest 
cover and forest cover change area 
estimates. A total of 665 2x2 km 
segments or primary sample units 
(PSUs) were visually interpreted 
by a team of photo-interpreters 
independently from the production 
team and produced a reference data 

Forest cover mapping in Gabon to calculate forest area (indicator 15.1.1)
 

Figure 18: Extent of forest in Gabon in 2015 and main causes of deforestation.
Credit: Christophe Sannier

set representing about 1% of the 
study area. Paired observations were 
extracted from the forest cover map 
and the reference data for a random 
selection of 50 pixels or secondary 
sample units (SSUs) for each PSU. 
Overall map accuracies greater than 
0.95 were achieved. PSUs and SSUs 
outputs were used to produce forest 
cover and forest cover change area 
estimates using both direct expansion 
and model-assisted regression (MAR) 
estimators. All area estimates were 
similar, but the variances of the MAR 
forest cover area estimates were 
smaller by factors as great as 50 than 
direct expansion estimates. In 2010, 
88.30 ± 0.26% of Gabon is covered 
by forest. In addition despite large 
overall map accuracies, deforestation 
estimates obtained from the maps 

alone can be misleading as indicated 
by the finding that the adjusted 
estimates of net change were twice 
the non-adjusted map estimates (for 
periods 1990-2000 and 1990-2010). 
The results confirmed the expected 
generally low level of deforestation 
for Gabon. However, net deforestation 
appears to have almost stopped in 
the last 10 years, which could be 
linked to the implementation of forest 
concession management plans from 
2000 onward. Deforestation increased 
again from 2010 to 2015 largely due 
to the development of large project as 
shown below:
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Indicator 15.1.2

Computation method

This indicator is calculated from data derived from a spatial 
overlap between digital polygons for protected areas from 
the World Database on Protected Areas (IUCN & UNEP-
WCMC 2017) and digital polygons for terrestrial and 
freshwater Key Biodiversity Areas (KBA) from the World 
Database of KBA, including Important Bird and Biodiversity 
Areas, Alliance for Zero Extinction sites, and other KBA. The 
indicator tracks the mean percentage [%] of each KBA 
that is covered by protected areas in order to better reflect 
trends in protected area coverage for countries or regions 
with few or no KBA.

As discussed above, EO are widely used to derive 
information on biophysical aspects of terrestrial and inland 
freshwater ecosystems and their services. Protected Areas 
and KBAs are often correlated with biophysical aspects, 
e.g. by following a mountain ridge or a river but their 
boundaries are not defined by such biophysical aspects 
(Sass et al 2012). Instead, both PAs and KBAs have their 
boundaries defined through a diverse series of potential 
mechanisms, for example participatory mapping involving 
local communities. EO does have the potential in helping 
define KBA boundaries, for example through using ‘extent of 
suitable habitat’ to define proportion of a global population 
of a species (criteria A1, B1, B2) or extent of a threatened 
habitat (criteria A2). These criteria are explained in the KBA 
standard document (IUCN, 2016). 

Limitations

The singular limitation of using EO data to calculate indicator 
15.1.2 is the inability of automated remote-sensed data to 
capture spatially defined areas that reflect human decision-
making rather than physical/biological features. EO data 
could conceivably aid in the delineation of KBAs and PAs, 
but not in their identification.

Key messages for countries on EO contribution to the 
computation method: 

• �Indicator 15.1.2 is based on a well-established 
methodology that uses the mean percentage [%] of 
each Key Biodiversity Area that is covered by protected 
areas in order to better reflect trends in protected area 
coverage for countries or regions with few or no Key 
Biodiversity Areas (KBA)

• �EO data can be successfully used to (i) separate 
terrestrial from freshwater ecosystems and map 
their ecosystem types and (ii) delineate the edges of 
protected areas, e.g. based on biophysical features 
such as lake shores, as well as to assess certain KBA 
criteria such as extent of suitable habitat

• �EO will not be able to replace certain aspects of the 
indicator computational such as participatory mapping 
by communities in proximity to KBAs

Data sources

Data category Data sources Website

Global/regional 
datasets

World Database on Protected Areas https://www.protectedplanet.net/ 

World Database on Key Biodiversity Areas http://www.keybiodiversityareas.org/home
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Indicators 15.1.1 
Forest area as a proportion of total land area

15.1.2
Proportion of important sites 
for terrestrial and freshwater 
biodiversity that are covered by 
protected areas, by ecosystem type

Custodian agency FAO UNEP-WCMC; UNEP; IUCN

Tier I I

Status of step-by-step methodology 
document on the metadata repository

Published Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status of EO in indicator 
guidelines

Technical capacity 
required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting 
calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for 
gaps in the EO record?

Overall EO relevance

Comments to support criteria

Reliable methods are established and widely used 
to extrapolate forest cover data from EO. One of 
the strengths of using EO is the possibility of 
detecting change, unless the area of interest is 
located in cloudy regions. The combination of EO 
based products with sampled reference data can 
produce reliable change estimates.

EO can separate terrestrial from 
freshwater ecosystem types 
(e.g. wetland, mangrove, forest, 
grassland etc.). However the 
indicator uses management as well 
as biophysical factors to identify 
important sites for biodiversity.
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Target 15.2

By 2020, promote the implementation of sustainable 
management of all types of forests, halt deforestation, 
restore degraded forests and substantially increase 
afforestation and reforestation globally

How can EO be used to help countries achieve the target?

Forests are a key terrestrial ecosystem, providing various 
ecosystem services, including food, biodiversity, protection 
from soil erosion, climate change mitigation. This ecosystem 
is rapidly disappearing, “thirteen million hectares of forests 
are being lost every year while the persistent degradation 
of drylands has led to the desertification of 3.6 billion 
hectares”, and this indicates the need for effective strategies 
to reduce deforestation and implement sustainable forest 
and land management practices. Together with target 15.1, 
this target ensures that forests are efficiently managed, and 
a sustainable balance between conservation and the use of 
natural resources is achieved. EO can be used to assess the 
change in forest extent and quality (e.g. degradation), but 
also to plan for the effective implementation of activities 
aiming to achieve the sustainable management of forest. 
Satellite images and subsequent analyses can help to identify 
sites where to implement reforestation and afforestation 
activities, as well as areas that are at higher risk of 
deforestation because of past forest clearing for agriculture 
or because of the proximity to infrastructures such as roads, 
and their protection should be prioritised. Different types of 
EO sensor systems are available (optical, radar and LiDAR) 
and can be used to map forest change based on type of 
forest, climatic conditions, technical capacity available in the 
country. Mapping forest degradation and biomass change is 
generally more challenging than monitoring forest extent, 
but new promising methods are being developed and tested.  

Current indicator(s)	

15.2.1 �Progress towards sustainable forest management

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 15.2.1

Computation method

Countries already report directly to the FAO on forest area, 
biomass stock, forest area within protected areas, forest 
area under a management plan and forest area under 
an independently verified forest management scheme. 
FAO then applies the compound interest formula to make 
estimates of the forest area net change rate, as well as the 
proportion of forest area within protected area and under 
a management plan. Countries report on forest cover using 
a combination of remote sensing data and national forest 
inventory. 

Sub-indicator a: �Forest area net change rate
Sub-indicator b: �Above-ground biomass stock in forest
Sub-indicator c: �Proportion of forest area located within 

legally established protect areas
Sub-indicator d: �Proportion of forest area under a long term 

forest management plan
Sub-indicator e:� Forest area under an independently verified 

forest management certification scheme

Sub-Indicator a – Forest area net change rate: EO are 
widely used to monitor forest extent. Freely available 
Landsat images (30m resolution) and Sentinel-2 images 
(10 – 20m resolution) can be used to map changes of 
forest at the national and sub-national scale. This approach 
can be easily used for monitoring deforestation in medium/
low cloud regions like boreal forests. However, for regions 
with high cloud cover such as the Amazon forest, the 
Congo Basin, and Malaysia/Indonesia, or where the 
biophysical environment is complex, forest monitoring 
is more challenging (Mitchard, 2016). Combinations of 
Landsat and Sentinel-2 can be used to increase their 
individual temporal resolution and further combinations 
with Sentinel-1 in areas where cloud cover is persistent, 
but in many cases Radar can be the best option. Forest 
area mapping approaches are reliant on 2D classification 
of SAR backscatter or automated change analysis applied 
to calibrated time-series. Estimates of forest height and 
biomass are possible using L-band data. P-band SAR 
penetrates vegetation canopies to a greater depth, but 
there are no currently operational P-band SARs. However, 
the European Space Agency P-band BIOMASS mission is 
scheduled for launch around 2021. A lot of radar datasets 
are commercial datasets, such as ALOS PALSAR (12.5 m) 
and TerraSAR-X (6 m). Therefore, data availability can be an 
issue in using Radar to monitor deforestation.

As described in Mitchard (2016) at least three approaches 
can be used to estimate deforestation, comparing one-
time layers, time series analyses and machine learning 
algorithms. The first approach, which is the most widely 
used, compares classified forest layers (e.g. forest/no-
forest) at different points in time. The accuracy of the input 
layers are critical for this method to be valid. The time series 
analyses compare a series of observations of the same 
forest parameter for example the Normalised Difference 
Vegetation Index (NDVI) using a specific algorithm. These 
time-series should include more than one observation/
year in order to avoid errors due to seasonality or cloud 
cover. Algorithms, such as pixel-based Break detection 
For Additive Seasonal Trends (BFAST) monitor (Mitchell et 
al., 2017), try to distinguish either a sudden break-point 
(for example due to a deforestation/degradation event) 
or a long-term trend (for example forest regrowth/forest 
degradation), from the natural variation that can be due 
just to seasonality (Mitchard, 2016). Machine learning 
algorithm, for example artificial neural networks, based 
on back propagation training algorithm, have also been 
used, mostly when more than one vegetation parameter 
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or spectral band, are used to detect forest change. The 
initial computational development of the algorithm can 
be expensive, but once the specific algorithm has been 
developed can be run easily. The model developed is valid 
just for the type of forests for which it has been trained, 
for different contexts new models needs to be generated.
Global and regional deforestation datasets are also 
currently freely available and can be used as baselines or 
downscaled at the national level. The coverage of these 
datasets goes from global to regional or at the country level 
(GLAD; Hansen et al., 2013 and 2016; Camara et al., 2013; 
PRODES 2016); their spatial resolution from 30m to 500 
m and their temporal resolution can be annual, monthly or 
bi-weekly. Considering the reporting frequency of 5 years 
the use of the global products downscaled at the country 
level can be used and provide a more systematic reporting 
of this indicator. Initiatives such as Open Foris by FAO and 
Global Forest Watch provide tools that can easily be used 
by countries to map their forest. In particular within Open 
Foris the tool Collect Earth enables country to collect data 
through Google Earth and assess their forest cover extent 
and to monitor its changes. The Global Forest Observation 
Initiative provides methodological advice on the joint use 
of remotely sensed and ground-based data to countries for 
forest monitoring and Green House Gas reporting (GFOI 
MGD 2.0, 2016).

Sub-Indicator b – Above-ground brown biomass stock in 
forest: Above-ground brown biomass, i.e. woody components 
such as the tree trunk and branches, requires the use of field 
plots and EO data. Traditional SAR and optical observations 
can be used to extract biomass values, but ground truth 
training data is required (Laurin et al., 2018).

Artificial neuronal network (ANN) techniques have been 
used to integrate remotely-sensed satellite data and field 
inventory data and thus estimate forest biomass. Some 
studies show that vegetation indices such as normalized 
difference vegetation index (NDVI), shortwave infrared 
(SWIR) band reflectance, transformed normalized difference 
vegetation index (TNDVI), soil adjusted vegetation index 
(SAVI), principal component analysis (PCA) and difference 
vegetation index (DVI) are suitable to predict forest 
biomass, by using optical EO data, but field plots are still 
necessary to calibrate the models at the country level 
(Nandy et al., 2017).

The biomass change is more difficult to detect using 
current EO technology. LiDAR and SAR tomography are the 
only suitable techniques, but are both rather expensive 
and need high technical expertise. Global data on biomass 
are also available and can potentially be downscaled at 
the national level and be used as baseline. The main 
datasets are Avitabile et al. (2016) at 1 km resolution and 
GlobBiomass (Santoro et al., 2018) developed using Radar 
data at 100m resolution. The Global Forest Observation 
Initiative (GFOI) has also developed a set of methods and 
guidelines for estimating carbon stocks using EO data such 

as Landsat and Sentinel, and ground based observations, 
which can support countries.

Recently launched (ICESat-2, SAOCOM) and upcoming 
missions (GEDI, MOLI, NISAR, ALOS-4, BIOMASS) from 
various space agencies have biomass estimation as primary 
or secondary objective. It is expected that they will have a 
strong impact on the accuracy of biomass estimation from 
space. 

Sub-Indicator c – Proportion of forest area located 
within legally established protect areas, Sub-Indicator 
d – Proportion of forest area under a long term forest 
management plan, Sub-Indicator e – Forest area under 
an independently verified forest management certification 
scheme: the proportion of forest located within these forest 
management categories can be extracted from the forest 
datasets used to detect changes in forest extent, as long 
as updated shapefiles of the boundaries of these forest 
management areas of interest are available.

Disaggregation

Spatial disaggregation can be carried out to downscale the 
data at the protected area level and other forest management 
types scale. Temporal disaggregation can also be performed 
thanks to the regular production of EO data. 

Treatment of missing values

The combination of different types of EO data, such as the 
use of radar in cloudy areas, and at different resolutions 
(e.g. EO at less than 10m resolution) can be used to treat 
missing values. Regional and global products can also be 
used to fill gaps. 

Regional aggregates

If using global products the regional aggregations is 
possible, but in case different deforestation detection 
methods are used the aggregation can be more difficult.
Sources of discrepancies

Discrepancies related to forest changes can arise based 
on the techniques used to detect deforestation and to the 
definition of forest used. The regional aggregation can also 
produce discrepancies if different forest change detection 
methods are used. National definitions of forest sometimes 
contradict the biophysical view of EO sensors that just 
observe tree cover. Furthermore the use of the tree cover, 
e.g. for industrial logging, is not easily discerned from EO 
data. The discrepancies between EO-derived forest extent 
and national statistics have been well documented (Tropek 
et al., 2014). Discrepancies related to forest biomass 
are associated with uncertainties in retrieval but also 
the prevailing environmental conditions which can vary 
between acquisitions even for the same forest area. SAR 
sensitivity to biomass also varies with frequency, with C- 
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and X-band tending to saturate at low biomass levels while 
L and P bands are more sensitive to medium and high 
biomass respectively. Data fusion approaches may help 
overcome sensor specific limitations such as saturation, 
operating modes and temporal gaps.

Limitations

The main limitations are related to the persistent cloud 
cover in many areas when using optical EO data for 
forest area and change mapping, the complexity of some 
ecosystems, seasonality and the technical capacity required 
to perform the EO data analyses often unavailable. Errors 
of commission or omission appear in EO-derived forest 
cover change products based on the techniques used to 
detect deforestation. While SAR is a powerful alternative 
it is limited by less frequent observation relative to optical 
sensors and fewer source of freely available data.

Biomass does not change naturally as quickly as other 
forest parameters and is often driven by subtle processes 
of degradation not easily detectable using optical sensors. 
Although the use of LiDAR could overcome these issues, 
airborne LiDAR is currently not sufficiently affordable to 
governments to acquire multi-year and wall-to-wall, other 
than for local projects. Although not yet spaceborne, there 

are experimental space LIDAR missions such as GEDI 
which had just been launched from the International Space 
Station (ISS) by NASA. The technical capacity required to 
estimate biomass from EO and ground-observation, can 
represent a limitation for many countries.

Key messages for countries on EO contribution to the 
computation method

• �The sustainable management of forest can be monitored 
and planned through EO thanks to well established 
methodologies and the availability of global datasets and 
open source platforms 

• �Monitoring forest biomass stock and their changes 
through EO is challenging, but new technologies and 
methods are becoming available to users with the 
required technical capacity to work with radar data for 
example. Consensus methods which combine optical, 
SAR, Interferometric SAR (InSAR) and LiDAR tend to be 
the most effective at overcoming the limitation of each 
of these EO technologies used in isolation.

• �Ground observations are still needed to complement EO 
data to monitor forest cover change and biomass stocks

Data sources

Data category Data sources Website

Source satellite 
data

Landsat https://earthexplorer.usgs.gov/

Sentinel data (1,2 and 3) from the Copernicus Open 
Access Hub

https://scihub.copernicus.eu/

Global/regional 
datasets (forest 
biomass)

Pan-tropical biomass map

https://www.wur.nl/en/Research-Results/Chair-
groups/Environmental-Sciences/Laboratory-of-
Geo-information-Science-and-Remote-Sensing/
Research/Integrated-land-monitoring/Forest_
Biomass.htm

GlobBiomass (global terrestrial biomass map for 
2010)

http://globbiomass.org/products/global-
mapping

Global/regional 
datasets (forest 
cover and 
change)

University of Maryland’s Global Land Analysis 
and Discovery laboratory generates near real time 
deforestation alerts

https://glad.umd.edu

Global Forest Watch (global change 2000-2017) https://www.globalforestwatch.org/

PRODES (Amazon change 2004 to 2018) http://www.obt.inpe.br/prodes/index.php

Software, tools 
and platforms

Global Forest Observation Initiative (GFOI) Methods 
and Guidance Documentation aimed at REDD+ 
Measurement, Reporting, and Verification

http://www.gfoi.org/methods-guidance/

Open Foris, of the FAO, a collection of free and open 
source tools for EO-based environmental monitoring

http://www.openforis.org

SEPAL: System for Earth Observation Data Access, 
Processing and Analysis for Land Monitoring

https://sepal.io 

Forestry TEP https://f-tep.com

https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land-monitoring/Forest_Biomass.htm
http://globbiomass.org/products/global-mapping
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Indicators 15.2.1 Sub-Indicator a: 
Forest area net 
change rate  

Sub-Indicator b: 
Above-ground 
biomass stock 
in forest

Sub-Indicator 
c: Forest area 
within legally 
established 
protect areas

Sub-Indicator 
d: forest 
area under a 
management 
plan

Sub-Indicator 
e: Forest 
area under 
management 
certification 
scheme 

Custodian agency FAO

Tier I n/a n/a n/a n/a n/a

Status of step-by-step 
methodology document on the 
metadata repository

Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status of EO 
in indicator 
guidelines

Technical 
capacity 
required

Availability of  
global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance 
with Reporting 
calendar

Sensitivity to 
change

Is it scalable 
(spatial)?

Is there a 
substitute for 
gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

EO are widely 
used to map 
forest cover, 
but in several 
context the 
misinterpretation 
of forest as 
non-forest or 
the detection of 
degraded forest 
can be challenging 
and requires 
higher technical 
capacity.

Changes in 
biomass can be 
detected using 
EO tool such as 
LiDAR and SAR 
tomography, but 
the technology 
is not fully 
mature, often 
expensive 
and requires 
a high level of 
expertise.

Forest area can 
be derived from 
EO. However, 
boundaries of 
protected areas 
are required, 
which cannot 
be derived from 
EO data.

Only possible 
in combination 
with in-situ 
data.

Only possible 
in combination 
with in-situ 
data.
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Target 15.3

By 2030, combat desertification, restore degraded land and 
soil, including land affected by desertification, drought and 
floods, and strive to achieve a land degradation-neutral world

How can EO be used to help countries achieve the target?

Land degradation, defined as “a state whereby the amount 
and quality of land resources necessary to support ecosystem 
functions and services and enhance food security remain 
stable or increase within specified temporal and spatial 
scales and ecosystems” (decision 3/COP.12, UNCCD, 2015a) 
is negatively impacting the well-being of billions of people 
(IPBES, 2018). Already at this point, there have been a 
number of global initiatives aiming to halt land degradation 
and restore degraded land. The global community’s efforts 
to halt desertification, maintain and restore land and soil 
productivity, and to mitigate the effects of drought are 
spearheaded by the United Nations Convention to Combat 
Desertification (UNCCD) which was adopted in Paris on 17 
June 1994. As the dynamics of land, climate and biodiversity 
are intimately connected, the UNCCD collaborates closely 
with the other two Rio Conventions; the Convention on 
Biological Diversity (CBD) and the United Nations Framework 
Convention on Climate Change (UNFCCC). The vision of the 
UNCCD aligns in particular with the CBD’s Aichi Biodiversity 
Target 15, which aim to restore at least 15% of degraded 
ecosystems; the Bonn Challenge (2011) and its regional 
initiatives to restore more than 150 million hectares; and 
most recently, the UN Sustainable Development Goals (SDGs) 
(Sims et al. 2017). Target 15.3 is strongly aligned with the 
land degradation neutrality (LDN) target setting process of 
the UNCCD which is supporting interested countries (now) 
through a dedicated target setting programme (TSP), 
including the definition of national baselines, targets and 
associated measures to achieve LDN by 2030.  While 120 
countries are in the process of setting voluntary targets, 
80 countries already have. As part of the TSP, the UNCCD 

has selected data partners to assist countries with data for 
target setting in the absence of national data. These include 
the ISRIC soil grids, the JRC Land productivity dynamics data 
layer and the ESA-CCI land cover. All of these global datasets 
are reliant on EO data as inputs thereby directly contributing 
to countries in the LDN Target Setting Program. 

Current Indicator(s)

15.3.1: Proportion of land that is degraded over total land 
area, with three sub-indicators capturing trends in land 
cover, land productivity, and carbon stocks. 

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 15.3.1

Computation method

The indicator falls under official reporting to the UNCCD, and 
as custodian agency it has already established a universal 
methodology for reporting on SDG 15.3.1, documented in 
the Good Practice Guidance (GPG, Version 1.0, 2017), which 
explicitly considers EO for reporting purposes. However, the 
potential for land degradation can already be detected using 
EO to estimate other drivers of change, as is used in the 
convergence of evidence approach (see discrepancies section).

The current indicator 15.3.1 methodology is a binary - 
degraded/not degraded - quantification based on the 
assessment of available data for three sub-indicators, 
namely Land cover and land cover changes, land 
productivity changes and carbon stock changes, to be 
validated and reported by national authorities. The sub-
indicators were adopted by the UNCCD’s governing body 
in 2013 as part of its monitoring and evaluation approach. 
They represent proxies that ought to reflect the capacity of 
the land to deliver ecosystem services and changes have to 



Compendium of guidance on Earth Observation to support the targets and indicators of the Sustainable Development Goals 143

COMPENDIUM OF EO CONTRIBUTION TO THE SDG TARGETS AND INDICATORS TARGET 15.3

be assessed and depicted as (i) positive or improving, (ii) 
negative or declining, or (iii) stable or unchanging. 

Based on the evaluation of the changes, the proportion of 
land that is degraded over total land area (%) is calculated 
following a “One out all out” (1OAO) principle, defined 
by the Scientific Conceptual Framework of the LDN (Land 
Degradation Neutrality) (see Figure below). That is, if one 
of the sub-indicators is negative (or stable when degraded 
in the baseline or previous monitoring year) for a particular 
land unit, the particular area is considered as degraded. 
The baseline for assessment is established over the period 
2000 to 2015, with the base year being 2015. All changes 
are assessed relative to the baseline value with a reporting 
interval of 4 years, starting in the year 2018. Countries are 
responsible for submitting national reports to UNCCD. 

For each of the sub-indicators, countries can access a wide 
range of global and generic data sources, including Earth 
observation (EO) and geospatial information, while at the 
same time ensuring national ownership.

For land cover and land cover change, a range of global 
EO-derived products are available at coarse resolution 
(see Data Sources section), which generally detail the 
distribution of vegetation types, water bodies and human-
made infrastructure, and reflect the use of land resources 
(i.e., soil, water and biodiversity) for agriculture, forestry, 
human settlements and other purposes. These datasets 
differ in the number of classes in which they describe the 
landscape, their spatial resolution and duration. National 
land cover datasets can more accurately represent the range 
of land cover types that exists in the respective country. 

There is an international standard for land cover which 
includes the Land Cover Meta Language (LCML), a common 
reference structure (statistical standard) for the comparison 

and integration of data for any generic land cover 
classification system. LCML is also used for defining land 
cover and ecosystem functional units used in the SEEA, and 
closely linked to the Intergovernmental Panel on Climate 
Change (IPCC) classification on land cover/land use. The 
IPCC land use change legend suggests six main classes 
(forest land, grassland, cropland, wetlands, settlements 
and other lands) which should be considered as a minimum 
set. Changes in landcover are identified as degradation or 
not using a transition matrix, in which reporting authorities 
have the opportunity to nominate which transitions to 
identify as degraded for their country (see below). 

Note: This sub-indicator is also expected to be used for 
reporting on SDG indicators 6.6.1, 11.3.1 and 15.1.1.

A large variety of methods exist to estimate land 
productivity and its associated changes from EO data 
sources. The sub-indicator refers to the total above-ground 
net primary production (NPP) defined as the energy fixed 
by plants minus their respiration which translates into 
the rate of biomass accumulation that delivers ecosystem 
services. While the ability to calculate changes in NPP 
in specific units such as tonnes/ha is preferred, changes 
in a unitless proxy of productivity, such as the NDVI or 
other vegetation index, can equally be used to identify 
degradation through relative changes in productivity over 
time. However, calibration and validation of the EO-based 
observations of productivity against field data can be a 
challenging task and requires a solid in situ data basis. 

The sub-indicator on carbon stocks, above and belowground 
is currently represented as a provisional proxy by Soil 
Organic Carbon (SOC) stocks. In UNCCD decision 22/COP.11, 
soil organic carbon (SOC) stock was adopted as the metric 
to be used with the understanding that this metric will 
be replaced by total terrestrial system carbon stocks, 
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once operational. SOC is an indicator of overall soil quality 
associated with nutrient cycling and its aggregate stability 
and structure with direct implications for water infiltration, 
soil biodiversity, vulnerability to erosion, and ultimately 
the productivity of vegetation, and in agricultural contexts, 
yields. For carbon stocks, IPCC (2006 & 2019) contains 
the most relevant definitions and standards related to 
soil infrastructure, and data transfer. EO methods can also 
be used to estimate aboveground carbon stocks, but SOC 
will be used until methods to measure total terrestrial 
carbon stock is operational and robust. The methodological 
approaches range from using default values based on land 
cover type which are modified by a range of use factors 
similar to those described in the IPCC processes, to highly 
detailed country-specific digital soil mapping, calibrated 
and validated using process-based models. 

Already at this point, Conservation International (CI) 
together with Lund University, and the National Aeronautics 
and Space Administration (NASA), have developed a platform 
for monitoring land change using EO in an innovative 
desktop and cloud-based system with the support of the 
Global Environment Facility (GEF). The Trends.Earth tool 
box draws on a variety of different data sources including 
the Normalized Difference Vegetation Index (NDVI), soil 
moisture, precipitation, evapotranspiration, land cover, soil 
carbon, agro-ecological zones as well as administrative 
boundaries. The toolbox is able to estimate the three sub-
indicators for monitoring the achievement of LDN and can 
be used by countries to analyse the data as well as to 
report to UNCCD.

Treatment of missing values

In case no data or information is available at country level 
for any sub-indicator, there exists a wide range of regional 
and global EO derived products with an acceptable spatial 
resolution to derive estimates for all three sub-indicators 
(See data sources section). The land area of countries with 
missing values (with no default data) are proposed to be 
excluded from regional and global aggregation.

Sources of discrepancies

Differences between global and national figures may 
arise due to differences in spatial resolution of datasets, 
classification approaches (i.e. definition of land cover classes 
or difference in classifying methods) and/or contextualization 
with other indicators, data and information. In such cases, 
the use of regional and global datasets derived from EO can 
play a role in clarifying such discrepancies. Alternatively, the 
convergence of evidence approach, adopted by the World 
Atlas of Desertification of the JRC, could be used to resolve 
discrepancies arising from the 1OAO principle. Convergence 
of reliable, global evidence of human environment, in the 
form of global change issues (GCIs) at a location suggests 
a potential for land degradation (at least in some form). 
The GCIs are a mixture of biophysical and socio-economic 

drivers, and were selected because of their availability as 
global data and their usefulness as factors associated with 
land degradation (WAD, 2018).

Limitations

While access to remote sensing imagery has improved 
dramatically in recent years, there is still a need for essential 
historical time series that is currently only available at 
coarse to medium spatial resolution. This resolution can 
represent an issue especially in mountainous areas, small 
island states and highly fragmented landscapes (GEO, 
2017). There is an urgent need to move to high resolution 
datasets (GEO, 2017).

Some aspects of land degradation, such as the loss of 
biodiversity and ecosystems services are not currently 
included in the UNCCD definition of Land Degradation and 
may also be not well captured by EO methods. 

While land productivity is not difficult to monitor from an 
EO points of view, for example by using a vegetation index 
time series, it is more difficult to determine if the land 
productivity trend observed corresponds to degradation. 
For example, bush encroachment or the presence of 
invasive plant species will feature a positive trend in land 
productivity but it is seen as land degradation.

Although, global coarse to medium resolution EO datasets 
are delivering acceptable results for reporting of the 
progress under Agenda 2030, efforts should be focused 
on the incorporation of high resolution satellite EO 
imagery as a starting point for the further development 
and improvement of the SDG reporting system of indicator 
15.3.1

For raw data, data sources include: 

- �Landsat-5 to 8 archive to derive the baseline period as 
well as the base year 2015

- �Sentinel-2 for monitoring and reporting starting from 
the year 2016 and onwards

- ��Sentinel-1 (evaluate potential for integration)

Existing products (with coverage exceeding national or 
regional initiatives) include:  

- �Pan-European Copernicus High resolution Layers (HRL) 
for imperviousness, forest, grasslands, water and 
wetness as well as small woody features for the year 
2015 at 20m resolution 

- �S2 prototype LC 20m map of Africa 2016 

- �Copernicus Dynamic Land Cover map at 100 m 
resolution produced annually for the entire globe
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Key messages for countries on EO contribution to the 
computation method

• �The sub-indicators of indicator 15.3.1 are theoretically 
well suited to an EO-based methodology but the 
strengths and limitations of the EO approach must 
be carefully understood in order to be compliant with 
the sub-indicator requirements, e.g. on assessing land 
degradation from a land productivity point of view not a 
biophysical one

• �The sub-indicator on carbon stocks, above and 
belowground is currently the most challenging. It will 
take more time to harmonise EO-based methods of 
above ground carbon assessment with other methods 
of soil organic carbon quantification before this sub-
indicator is robust enough for EO.

• �The other sub-indicators can use EO more readily as 
methods for land cover and land productivity mapping 
are well established. However, the limitations are 
that these sub-indicators may not be available at the 
appropriate spatial scale and that land productivity must 
be quantified from a degradation perspective

• �Although indicator 15.3.1 adopts the “One out all out” 
principle, a convergence of evidence approach was 
used in the World Atlas of Desertification to map areas 
vulnerable to land degradation. Some of the global 
change issues which could indicate degradation at a 
location are mapped by EO. 

Data sources

Sub-indicator 15.3.1 on Land Cover and Land Cover Change

Sub-indicator 15.3.1 on Land Productivity

Sub-indicator 15.3.1 on Carbon Stocks, Above and Belowground

Data category Data sources Website

Global/regional 
datasets

ESA CCI Land Cover https://climate.esa.int/en/projects/land-cover  

SEEA-MODIS https://search.earthdata.nasa.gov

Copernicus Global Land Cover https://land.copernicus.eu/global/products/lc

World Atlas of Desertification https://wad.jrc.ec.europa.eu/

Data category Data sources Website

Global/regional 
datasets

Copernicus Global Land Service products https://land.copernicus.eu/global/

SEEA-MODIS https://search.earthdata.nasa.gov

Land Productivity Dynamics
http://publications.jrc.ec.europa.eu/repository/
handle/JRC80541 

World Atlas of Desertification https://wad.jrc.ec.europa.eu/

Data category Data sources Website

Global/regional 
datasets

Harmonized World Soil Database (HWSD)
http://webarchive.iiasa.ac.at/Research/LUC/
External-World-soil-database/HTML

SoilGrids https://soilgrids.org

Global Soil Organic Carbon Map (GSOC) http://54.229.242.119/GSOCmap/

World Atlas of Desertification https://wad.jrc.ec.europa.eu/

http://publications.jrc.ec.europa.eu/repository/handle/JRC80541
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML
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Trends.Earth, developed by 
Conservation International in 
corporation with NASA and Lund 
University, under funding of the 
Global Environment Facility, is a 
tool to integrate national level data 
with globally available EO datasets 
to calculate SDG indicator 15.3.1 
(proportion of degraded land). It is 
based on standardised methods, 
while also providing the flexibility 
for customisation to local conditions. 
The tool uses data from three sub-
indicators –land cover, vegetation 

productivity and soil organic carbon 
- to estimate the degraded land area 
and is able to produce spatial explicit 
information (Figure 19).

For each Sub-indicator, changes 
have to be assessed and depicted 
as (i) positive or improving, (ii) 
negative or declining, or (iii) stable or 
unchanging. Based on the evaluation 
of the changes in these three sub-
indicators, the proportion of land 
that is degraded over total land area 
(%) is calculated and reported as a 

Earth as a tool for calculating 15.3.1 in Uganda
 

Credit: Franziska Albrecht (GeoVille)

Figure 19: Overview of the SDG 15.3.1 Sub-Indicators. 

Figure 20: Schematic illustration of Trends.Earth processing and results for Uganda. 

binary (i.e. degraded/not degraded) 
quantification as required by SDG 
target indicator 15.3.1. 

The quantification follows the so 
called “One out all out” (1OAO) 
principle. That is, if one of the sub-
indicators is negative (or stable when 
degraded in the baseline or previous 
monitoring year) for a particular land 
unit, then the particular area would be 
considered as degraded. The baseline 
is established over the period 2000 to 
2015, with the base year being 2015. 
All changes are assessed relative to 
the baseline value with a reporting 
interval of 4 years, starting in the 
year 2018. The land degradation 
assessment is illustrated in Figure 20.

The method for calculating SDG 
indicator 15.3.1 is extensively 
described in the Good Practice 
Guidance (GPG) developed by UNCCD. 
In collaboration with UNCCD, the 
Trends. Earth team, as of November 
2018, has trained over 400 people 
– from representatives of national 
statistics offices and ministries of 
environment, to academic and non-
profit users – on how to use the 
tool for reporting purposes. Access 
to simplified summaries of spatial 
outputs were greatly appreciated by 
users to simplify obtaining the data 
they needed directly in the format 
required for reporting.

Lessons learned: 
A key need that Trends.Earth users 
identified is the importance of 
support for local and nationally 
available information to supplement 
EO data. Particularly for analyses of 
land cover and carbon stocks, country 
representatives noted the limitations 
of globally available EO data in some 
areas. 
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Indicators 15.3.1 Sub-Indicator on 
Trends in land cover

Sub-Indicator on 
trends in land 
productivity

Sub-Indicator on trends 
in carbon stocks, above 
and below ground.

Custodian agency UNCCD

Tier II n/a n/a n/a

Status of step-by-step 
methodology document on the 
metadata repository

Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO 
technologies

Status of EO 
in indicator 
guidelines

Technical 
capacity required

Availability of  
global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with 
Reporting calendar

Sensitivity to 
change

Is it scalable 
(spatial)?

Is there a 
substitute for 
gaps in the EO 
record?

Overall EO relevance

Comments to support criteria

There is sufficient 
evidence to suggest 
that EO could fully 
support countries 
in the production 
of this indicator 
as land cover is 
widely available and 
routinely monitored.

There is sufficient 
evidence to suggest 
that EO could fully 
support countries 
in the production 
of this indicator as 
land productivity 
proxies are routinely 
monitored.

Carbon stock monitoring 
using EO data has 
advanced but challenges 
remain to trend detection 
as comparability between 
different time periods is 
limited by changes in EO 
and lack of robust time 
series
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Target 15.4

By 2030, ensure the conservation of mountain ecosystems, 
including their biodiversity, in order to enhance their capacity 
to provide benefits that are essential for sustainable 
development

How can EO be used to help countries achieve the target?

Mountain ecosystems are hotspots of biodiversity and 
provide essential ecosystem services for population living 
in and beyond mountain areas. Accordingly, their safeguard 
is of primary importance to help achieving certain SGDs. 
This is explicitly recognized in SDG 15 through this target, 
which is fully dedicated to conserving mountain ecosystems 
so that their biodiversity and the services that flow from 
them are not in peril and are sustained in the long term. 

EO can help support the conservation and sustainable 
management of mountain ecosystems through multiple 
ways. The applicability of EO to monitor land use dynamics 
and the drivers of land use change, such as expansion of 
human settlements or crop conversion, as well as their 
implications for biodiversity, has been extensively proven. 
EO data, such as Digital Elevation Models (DEMs) or data 
on climate and dynamic processes, can also be used to 
feed models that assess the supply of and demand for 
mountain ecosystem services. These models, in turn, could 
be combined with information derived from climate or 
land use change scenarios to assess how the provision of 
ecosystems services could be affected by them, allowing 
to identify priority areas to implement adaptation actions. 

Current Indicator(s): 

15.4.1 C�overage by protected areas of important sites for 
mountain biodiversity

15.4.2 �Mountain Green Cover Index. 

Potential new indicator(s) based on EO

Given that mountain ecosystems have been highlighted as 
one of the most vulnerable to climate change, the degree of 
vulnerability to climate change could also be considered by 
countries in order achieve this target. Mountain snow and 
ice are the main control parameters of the hydrological cycle 
of many watersheds. The melting glaciers and decrease 
in snow volume may therefore affect water availability 
for the population living in and outside mountain areas. 
An indicator focusing on the proportion of snow and ice 
cover in mountain areas could easily be developed using 
EO methods and would provide valuable insights on the 
effects of climate change on regional water availability.  

While indicator 15.4.2 is relevant, it may not be able to fully 
capture some of the main drivers of mountain ecosystem 

degradation processes such as overgrazing, pollution, 
invasive species and fuelwood extraction or timber 
extraction, as these processes do not always translate 
into land cover/land use conversion. An additional indicator 
focusing on ecosystem functioning, such as vegetation 
productivity, may be appropriate to complement the current 
set of indicators. 

Given the importance of human pressures on mountain 
biodiversity and ecosystem service use and demand, an EO-
based socio-economic indicator, such as population density 
in mountain areas would possibly be meaningful as well; 
especially also in view of the link between demography 
and land use.

Short methodological guidelines illustrated 
with EO best practice examples

Indicator 15.4.1

Computation method

This indicator is calculated from data derived from a 
spatial overlap between digital polygons of protected 
areas included in the World Database on Protected Areas 
(IUCN & UNEP-WCMC 2017), Key Biodiversity Areas (from 
the World Database of Key Biodiversity Areas, including 
Important Bird and Biodiversity Areas, Alliance for 
Zero Extinction sites, and other Key Biodiversity Areas; 
available through the Integrated Biodiversity Assessment 
Tool), and mountains (UNEP-WCMC 2002). The indicator is 
computed as the mean percentage of each mountain Key 
Biodiversity Area currently recognised that is covered by 
protected areas.

Sources of discrepancies

Protected areas are not static measures, they continually 
change in response to the varying pressures they face. 
Despite concerted efforts by UNEP-WCMC in collaboration 
with national, regional and international partners the 
World Database on Protected Areas (WDPA) is not always 
entirely up-to-date. As such, there can be discrepancies 
between national statistics and those calculated by state 
parties on national protected area coverage.

Limitations

The indicator does not measure the effectiveness of 
protected areas in reducing biodiversity loss, which 
ultimately depends on a range of management and 
enforcement factors not covered by the indicator. 
Regarding important sites, the biggest limitation is that 
site identification to date has focused on specific subsets 
of biodiversity, for example birds (for Important Bird and 
Biodiversity Areas) and highly threatened species (for 
Alliance for Zero Extinction sites).
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An additional limitation is that PAs don’t protect elevational 
gradients uniformly across continents (Elsen et al., 2018) 
and not sufficiently either to preserve biodiversity, 
especially under climate change. 

Key messages for countries on EO contribution to the 
computation method:

• �Indicator 15.4.1 is based on a well-established 
methodology that uses the mean percentage [%] of 
each mountain Key Biodiversity Area that is covered 
by protected areas in order to better reflect trends in 
protected area coverage for countries or regions with few 
or no mountain Key Biodiversity Areas (KBA).

• �It is not employing any EO data in the computational 
method but could feasibly use it to (i) identify mountain 
ecosystem types (such as mountain bioclimatic belts) by 
incorporating a Digital Elevation Models (Körner et al., 
2011) and (ii) delineate the edges of protected areas in 
mountains, e.g. based on biophysical features such as 
lake shores, as well as to assess certain KBA criterion 
such as extent of suitable habitat. 

• �Besides topography, direct use of EO for 15.4.1 is not 
obvious but their indirect use for the monitoring and 
assessment of biodiversity and ecosystems (and change 
therein) is easy to imagine. 

Data sources

Data category Data sources Website

Global/regional 
datasets

The World Database on Protected areas, as 
accessible via Protected Planet

www.protectedplanet.net

The World Database on Key Biodiversity Areas, as 
accessible via BirdLife

http://www.keybiodiversityareas.org/home

Global Mountain Explorer https://rmgsc.cr.usgs.gov/gme

Socio-Economic Data and Application Center: http://sedac.ciesin.columbia.edu
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Remoteness and complex 
topographies represent major 
challenges for the acquisition of data 
on the state of and trends in mountain 
ecosystems, their biodiversity, and 
the ecosystem resources they provide, 

including water and timber. Yet such 
data are critically needed to develop 
sustainable pathways towards the 
long-term conservation of mountain 
ecosystems and their biodiversity. EO is 
therefore a critical component toward 

Open access EO data and web tools for watching over the Alps for 
planning towards target 15.4

Figure 21: Sentinel Alpine Observatory (Source: http://sao.eurac.edu/sao/#mission)

acquiring the biological and physical 
parameters to monitor environmental 
processes in mountains and support 
the proactive management of natural 
assets. In the European Alps, the 
acquisition and delivery of reliable 
up-to-date information is achieved 
with the Sentinel Alpine Observatory 
(SAO). The SAO is an initiative of 
Eurac Research-Institute for Earth 
Observation that gathers more than 10 
years of expertise in remote sensing-
based environmental monitoring in 
the alpine region of South Tyrol, Italy. 
Thanks to innovative methodologies 
for the exploitation of the new sensor 
technology on board the Copernicus 
Sentinel satellites, the SAO provides 
users of Earth Observation data in 
the alpine region with a range of map 
products related to key environmental 
parameters extracted from Sentinel 
data as well as a range of services. 
The products comprise:

• �Level 2 data (Sentinel-2 RGB, 
Sentinel-2 surface reflectance, 
Sentinel-1 backscatter),

• �Water and cryosphere data 
(snow, glacier, permafrost, 
evapotranspiration, soil moisture)

• �Vegetation and land use dynamics 
data (grass leaf area index, 
Normalized Difference Vegetation 
Index, forest cover change)

• �Natural hazards data (landslide 
monitoring)

These products are made available 
for unrestricted use to the scientific 
community through a user-friendly 
web GIS platform. Services include a 
catalogue to publish and access data 
at different scales, cloud-computing 
services to perform customized 
analysis on the data, and web tools 
for visualization and interactive 
analysis of Sentinel data time series. 
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Indicator 15.4.1

Computation method

The Mountain Green Cover Index, or SDG indicator 15.4.2, 
measures changes in the area of green vegetation in 
mountain areas. Mountain areas are defined according 
to UNEP-WCMC (Kapos et al. 2000), which classifies 
mountains in 6 different classes based on a combination of 
elevation and ruggedness. These classes are: 

Class 1: elevation > 4,500 metres
Class 2: elevation 3,500 – 4,500 metres
Class 3: elevation 2,500 – 3,500 metres
Class 4: elevation 1,500 – 2,500 metres and slope > 2
Class 5: elevation 1,000 –1,500 metres and slope > 5 or 
local elevation range (LER 7 kilometre radius) > 300 meters
Class 6: elevation 300 – 1,000 metres and local elevation 
range (7 kilometre radius) > 300 meters

Changes in the area of green vegetation are reported as 
the change of the proportion of the area covered by 3 IPCC 
land cover/land use classes (forest, grassland/shrubland 
and cropland). This figure is expressed as a percentage of 
the total mountain area.

Remote sensing methods can contribute to the assessment 
of changes in land cover in mountain areas. As indicated in 
the indicator’s metadata, these changes can be estimated 
using Collect Earth (Bey et al. 2016), based on the visual 
interpretation of medium to high resolution multi-temporal 
satellite images from DigitalGlobe, SPOT, Sentinel 2, Landsat 
and MODIS imagery within Google Earth, Bing Maps and 
Google Earth Engine. Image resolution ranges from 3 cm to 
250 meters. Data and images are stored and made globally 
available for any year from 2000. The changes in land cover 
are assessed using a sample-based approach. Collect Earth 
allows the user to distribute sampling plots in 3 different 
ways: Systematic, Random and Stratified Random. The 
result is a grid of sampling plots, in which each plot is 
classified according to the dominant land cover by the user.
 
Disaggregation

This indicator is disaggregated by the mountain classes 
defined by Kapos et al. (2000). The disaggregation by 
mountain areas can be carried out with the help of EO 

derived products such as digital elevation models. A global 
map of mountains based on UNEP-WCMC classification was 
produced using these products in 2015 by the Mountain 
Partnership Secretariat at the Food and Agriculture 
Organization of the United Nations.

Treatment of missing values

The visual interpretation of satellite images can give 
rise to missing values due to cloud cover, especially in 
tropical areas. However, considering that only one value 
of land cover class is needed per year for a given area, the 
proportion of missing values is expected to be very low, 
given the high variety of imagery available in Collect Earth. 
In cases with persistent cloud cover, radar data could be 
potentially used as a substitute. 

Sources of discrepancies

Protected areas are not static measures, they continually 
change in response to the varying pressures they face. 
Despite concerted efforts by UNEP-WCMC in collaboration 
with national, regional and international partners the World 
Database on Protected Areas (WDPA) is not always entirely 
up-to-date. As such, there can be discrepancies between 
national statistics and those calculated by state parties on 
national protected area coverage.

Limitations

The sampling density established by FAO (a systematic 
grid of 500 000 plots, half hectare each plot, 16 km grid) 
may not be high enough to produce a fully representative 
dataset for all countries. Some countries may need to 
complement this and collect more data, especially for 
countries with highly heterogeneous mountain landscapes.

Key messages for countries on EO contribution to the 
computation method:

• �Indicator 15.4.2 is fully based on EO data, but does 
not allow to fully capture some of the main drivers of 
mountain ecosystem degradation processes affecting 
vegetation such as overgrazing, fuelwood and timber 
extraction or forest to cropland conversion, which has 
important implications for biodiversity in mountain 
ecosystems of the world.
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Data sources

Data category Data sources Website

Global/regional 
datasets

Shuttle Radar Topography Mission (SRTM) 1 arc-sec 
global

https://earthdata.nasa.gov/nasa-shuttle-radar-
topography-mission-srtm-version-3-0-global-
1-arc-second-data-released-over-asia-and-
australia 

ASTER DEM 30 m global https://asterweb.jpl.nasa.gov/gdem.asp 

Precise Global Digital 3D Map "ALOS World 3D"
https://www.eorc.jaxa.jp/ALOS/en/aw3d/
index_e.htm

OpenTopography https://opentopography.org/

Software, tools 
and platforms

Collect Earth http://www.openforis.org/tools/collect-earth.html

Global Mountain Explorer https://rmgsc.cr.usgs.gov/gme/
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Indicators 15.4.1  
Goverage by protected areas of 
important sites for mountain 
biodiversity

15.4.2
Mountain Green Cover Index

Custodian agency UNEP-WCMC; UNEP; IUCN FAO

Tier I I

Status of step-by-step methodology document on 
the metadata repository

Published Published

Relevance of EO 
for the indicator 
criteria

Maturity of EO technologies

Status of EO in indicator guidelines

Technical capacity required

Availability of  global EO data

Robustness of 
proposed  
methodology 
Criteria

Compliance with Reporting calendar

Sensitivity to change

Is it scalable (spatial)?

Is there a substitute for gaps in the 
EO record?

Overall EO relevance

Comments to support criteria

EO data could be useful if there 
are a set of mountain-specific 
essential biodiversity variables 
that are identified and if EO 
data get collected at the right 
resolution for these variables, 
accounting for the fact that 
mountain ranges vary greatly in 
their nature, topography, ecology, 
etc. between countries.

The methodology to 
assess this indicator is 
fully based on EO data. The 
methodology proposes the 
use of a tool (Collect Earth) 
that is freely available and 
for which training materials 
are abundant. 
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ANNEX

AAAA 	 Addis Ababa Action Agenda

AET 	 Actual Evapotranspiration 

AGEOS 	� Gabonese Agency for Space Studies and 
Observations

AHT SDG 	� Ad-Hoc Team on Sustainable Development 
Goals

ALOS 	 Advanced land Observing Satellite

ANN 	 Artificial Neuronal Network

ASA 	 Advisory Services and Analytics

ASAR 	 Advanced Synthetic Aperture Radar

ASTER �	� Advanced Spaceborne Thermal Emission and 
Reflection Radiometer

ATSR 	 Along Track Scanning Radiometer

AVHRR 	 Advanced Very High Resolution Radiometer

BFAST 	� pixel-based Break Detection for Additive 
Seasonal Trends

BLI 	 BirdLife International

CCI 	 Climate Change Iniative

CDOM 	 Colored dissolved organic matter

CEOS C	 ommittee on Earth Observation Satellites

CMEMS 	� Copernicus Marine Environment Monitoring 
Service�

CSIRO �	� Commonwealth Scientific and Industrial 
Research Organisation

CZCS 	 Coastal Zone Color Scanner

DAAC 	 Distributed Active Archive Centre

DEM 	 Digital Elevation Model

DG-JRC 	 Directorate General – Joint Research Council

DHS 	 Demographic and Health Surveys

DLR 	 German Aerospace Centre

EDC 	 Euro Data Cube

EG-ISGI �	�� E�xpert Group on the Integration of Statistica  
and Geospatial Information

EM-DAT 	 Emergency Events Database

EMS 	 Copernicus Emergency Management Service

EO 	 Earth Observations

EO4SDG �	� Earth Observation for Sustainable 
Development Goals

ESA 	 European Space Agency

ESDC 	 Earth System Data Cube

ET 	 Evapotranspiration 

ETM+ 	 Enhanced Thematic Mapper Plus

EVI 	 Enhanced Vegetation Index

FAPAR 	� Fraction of Absorbed Photosynthetically 
Active Radiation

FAO 	 Food and Agricultural Organisation

FAOSTAT 	 FAO Statistical Database

FEWS 	� RFE Famine Early Warning Systems Rainfall 
Estimates

fCover 	 fraction of Green Vegetation Cover

fPAR 	� fraction of Photosynthetically Active Radiation

FRA 	 Forest Resources Assessment

GEDI 	� Global Ecosystem Dynamics Investigation 
Lidar�

GEO 	 Group on Earth Observations

GEOBIA 	 Geographic Object-Based Image Analysis 

GEO BON �	� Group on Earth Observations Biodiversity 
Observation Network

G-Econ 	 Geographically based Economic data

GEOGLAM �	� Group on Earth Observations Global 
Agricultural Monitoring

GEO-GNOME 	��Global Network for Observation and 
Information in Mountain Environments

GEOSS 	 Global Earth Observation System of Systems

GES 	 Good Environmental State

GCP 	 Global Precipitation Climatology Project 

GFOI 	 Global Forest Observation Initiative

GFW 	 Global Forest Watch

GIS 	 Geographic Information System

GHSL 	 Global Human Settlement Layer

DLR 	 German Aerospace Center

GMW 	 Global Mangrove Watch

GMIA 	 Global Map of Irrigation Areas

GOCI 	 Geostationary Ocean Color Imager

GOSAT 	 Greenhouse Gas Observation Satellite

GPS 	 Global Positioning System

GPSDD 	� Global Partnership for Sustainable 
Development Data

GRACE 	� Gravity Recovery and Climate Experiment 
mission

LIST OF ACRONYMS AND ABBREVIATIONS



Compendium of Earth Observation contributions to the SDG Targets and Indicators 156

ANNEX

GRUMP 	 Global Rural Urban Mapping Project

GSO 	 Generic Slum Ontology

GSOC 	 Global Soil Organic Carbon

GSP 	 Global Soil Partnership

GUF 	 Global Urban Footprint

GWOS 	 Global Wetlands Observation System

HLPF 	 High Level Political Forum

HPC 	 High Performance Computing

HWSD 	 Harmonized World Soil Database

IAEG-SDGs 	�Inter Agency Expert Group on SDG Indicators

ICAO 	 International Civil Aviation Organization

ICEP 	 Index of Coastal Eutrophication

IEA 	 International Energy Agency

ILO 	 International Labour Organization

IOC 	� Intergovernmental Oceanographic 
Commission

IOC-UNESCO 	�Intergovernmental Oceanographic 
Commission of UNESCO

IOOS 	 Integrated Ocean Observing System

IPCC 	 International Panel on Climate Change

IRS 	 Indian Remote Sensing satellite

ISPRA 	� Superior Institute for the Environmental 
Protection and Research

ISRIC 	� International Soil Reference and Information 
Centre

ITPS 	 Intergovernmental Technical Panel on Soils

IUCN 	 International Union for Conservation of 
Nature

JERS 	 Japanese Earth Resources Satellite 

JAXA 	 Japanese Aerospace Exploration Agency

JRC	 Joint Research Centre

KBA 	 Key Biodiversity Areas

LAI	 Leaf Area Index

LCCS	 Land Cover Classification System

LDN 	 Land Degradation Neutrality

LiDAR	 Light Detection and Ranging

LSMS	 Living Standards Measurement Surveys

LULC 	 Land Use and Land Cover

MAR 	 Model-assisted Regression

MATTM 	� Italian Ministry for the protection of 
Environment and Sea

MDG 	 Millennium Development Goal

MEA 	 Multilateral Environmental Agreement

MERIS 	� Medium Resolution Imaging 
Spectroradiometer

MICS	 Multiple Indicator Cluster Surveys

MISR 	 Multi-angle Imaging SpectroRadiometer 

MODIS 	� Moderate Resolution Imaging Spectrometer 
Sensor

MOOC 	 Massive Open Online Course 

MSFD EU 	 Marine Strategy Framework Directive

NASA 	� National Aeronautics and Space Admin	
istration

NDVI 	 Normalized Difference Vegetation Index

NGO 	 Non-Government Organisation

NIR 	 Near Infrared

NMCA 	 National Mapping and Cadastral Authorities

NOAA 	� National Oceanic and Atmospheric Association

NPP 	 Net Primary Productivity

NSO 	 National Statistic Office 

MSI: 	 Multi Spectral Imager

OA 	 Ocean Acidification

OBIA 	 Object-based Image

OCO 	 Orbiting Carbon Observatory

OLCI 	 Ocean and Land Colour Imager

OLI 	 Operational Land Imager

PALSAR 	 Phased Array Synthetic Aperture Radar

PAR 	 Photosynthetically Active Radiation

PRODES 	� Programa de Cálculo do Desflorestamento da 
Amazônia (Deforestation in Brazil)

PSU	  Primary Sample Units

REDD+	  �United Nations Reducing Emissions from 
Deforestation and forest Degradation 
Scheme

SAO 	 Sentinel Alpine Observatory 

SAR 	 S�ynthetic Aperture Radar

SeaWiFS 	 Sea-Viewing Wide Field-of-View Sensor

SEPAL	  �System for Earth Observation Data Access, 
Processing and Analysis for Land Monitoring

SDD 	 Secchi Disk Depth

SDMX 	 Statistical Data and Metadata Exchange 

SISH 	 Slum/Informal Settlement Households

SMAP 	� Soil Moisture Active Passive satellite mission

SMOS 	� Soil Moisture Ocean Salinity satellite mission
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ANNEX

SNAP 	 Sentinel Application Platform

SPOT 	 S�ysteme Pour l’Observation de la Terre 
(French satellite)

SSS 	 Sea Surface Salinity

SST 	 Sea Surface Temperature

SSU 	 Secondary Sample Units

SDG 	 Sustainable Development Goal

SWOS	  �Satellite-based Wetlands Observation 
Service

TEP 	 Thematic Exploitation Platforms

TIRS	  Thermal Infrared Sensor

TOMS	  Total Ozone Mapping Spectrometer

TOA 	 Top Of Atmosphere 

TRMM 	 Tropical Rainfall Measuring Mission

TRWR 	 Total Renewable Freshwater Resources

TSM 	 Total Suspended Matter

TSS 	 Total Suspended Solids 

TWW 	 Total freshwater withdrawn

UAV 	 Unmanned aerial vehicle

UN	  United Nations

UNAIDS	  United Nations Programme on HIV/AIDS

UN CBD 	 Convention on Biological Diversity

UNCCD	  UN Convention to Combat Desertification

UN ECOSOC 	UN Economic and Social Council

UNFCCC �	� United Nations Framework Convention on 
Climate Change

UNEP 	 United Nations Environment Programme 

UNGA 	 United Nations General Assembly

UN-GGIM	  �UN Committee of Experts on Global 
Geospatial Information Management

UNICEF 	� United Nations International Children’s 
Emergency Fund

UNIDO 	� United Nations Industrial Development 
Organization

UNISDR 	� United Nations International Strategy for 
Disaster Reduction

UNEP-WCMC 	�UN Environment World Conservation 
Monitoring Centre

UNESCO 	� United Nations Educational, Scientific and 
Cultural Organization

UNESCO-UIS 	UNESCO Institute for Statistics

UNFCCC	  �UN Framework Convention on Climate 
Change

UNSD 	 United Nations Statistics Division 

USGS 	 United States Geological Survey

UV	  Ultraviolet

VCF 	 Vegetation Continuous Field

VCI 	 Vegetation Condition Index

VPI 	 Vegetation Productivity Index

VHR 	 Very High Resolution

VIIRS 	 Visible Infrared Imaging Radiometer Suite

VIS 	 Visible Spectrum

WaPOR 	 Water Productivity Open-access portal

WASH 	 Water, Sanitation and Hygiene for All 

WGGI 	 Working Group on Geospatial Information

WHO 	 World Health Organization

WOIS 	 Water Observation and Information 

WRI 	 World Resources Institute

WSF 	 World Settlement Footprint

WSSD 	 World Summit on Sustainable Development

WT 	 Water Temperature
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