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ABSTRACT

In the face of the growing challenges brought about by human activities, effective planning and decision-making
in biodiversity and ecosystem conservation, restoration, and sustainable development are urgently needed.
Ecological models can play a key role in supporting this need and helping to safeguard the natural assets that
underpin human wellbeing and support life on land and below water (United Nations Sustainable Development
Goals; SDG 15 & 14). The urgency and complexity of safeguarding forest (SDG 15.2) and mountain ecosystems
(SDG 15.4), for example, and halting decline in biodiversity (SDG 15.5) in the Anthropocene requires a re-
envisioning of how ecological models can best support the comprehensive assessments of biodiversity and its
change that are required for successful action.

A key opportunity to advance ecological modeling for both predictive and explanatory purposes arises
through a collaboration between ecologists and the Earth observation community, and a close integration of
remote sensing and species distribution models. Remote sensing products have the capacity to provide con-
tinuous spatiotemporal information about key factors driving the distribution of organisms, therefore improving
both the use and accuracy of these models for management and planning.

Here we first survey the literature on remote sensing data products available to ecological modelers interested
in improving predictions of species range dynamics under global change. We specifically explore the key bio-
physical processes underlying the distribution of species in the Anthropocene including climate variability,
changes in land cover, and disturbances. We then discuss potential synergies between the ecological modeling
and remote sensing communities, and highlight opportunities to close the data and conceptual gaps that cur-
rently impede a more effective application of remote sensing for the monitoring and modeling of ecological
systems. Specific attention is given to how potential collaborations between the two communities could lead to
new opportunities to report on progress towards global agendas - such as the Agenda 2030 for sustainable
development of the United Nations or the Post-2020 Global Biodiversity Framework of the Convention for

Biological Diversity, and help guide conservation and management strategies towards sustainability.

1. Introduction

Human society in the Anthropocene has emerged as a global driver
rapidly transforming ecosystems (Ellis, 2011, 2015; Waters et al.,
2016). Anthropogenic transformation affects the distribution of species
and habitats through a range of drivers and processes including land-
use and land-cover change, climate change, pollution, (over-)exploita-
tion (Benitez-Lépez et al., 2019), and biological invasions (Chaudhary
et al., 2015; Lenzen et al., 2009; Newbold et al., 2015, 2016; Pekin and
Pijanowski, 2012; Pereira et al., 2012). Importantly, the existence of
global supply chains that interconnect human societies implies that
local anthropogenic impact can also be driven by consumptive demands
thousands of kilometers away (Chaudhary and Kastner, 2016; Marques
et al., 2019; Meyfroidt et al., 2013; Rudel, 2007; Verburg et al., 2015).
Furthermore, novel disturbance regimes are emerging, such as altered
frequency and intensity of extreme climatic and fire events (IPCC, 2014;
Mahecha et al., 2017; Ummenhofer and Meehl, 2017). Such events
impact the state, structure, functionality, and evolution of biological
systems at different scales, potentially increasing vulnerability to fur-
ther changes in climate variability (Dirzo et al., 2014; IPCC, 2014).

The challenges posed by anthropogenic impacts on the environment
are increasingly recognized at national and international levels. This
has resulted in large integrated monitoring and reporting frameworks.
At the global level, such frameworks include the United Nations' (UN)
Sustainable Development Goals (SDGs, 2030 Agenda) as well as the
Aichi biodiversity targets (Strategic Plan for Biodiversity 2011-2020)
and the Post-2020 Global Biodiversity Framework of the Convention on

Box 1
Species distribution models.

Biological Diversity. For example, UN goal 15.5 aims to ‘Take urgent
and significant action to ... halt the loss of biodiversity and, by 2020,
protect and prevent the extinction of threatened species’, whilst the
closely related Aichi target 12 focuses on improving the conservation
status of threatened species. These targets are used to monitor progress,
inform actions, and evaluate alternative options for governance and
decision-making. Meeting the SDGs and the targets of the Convention
on Biological Diversity requires a suite of monitoring strategies for the
acquisition of high quality data and a thorough understanding of cur-
rent and emerging pressures acting on species and ecosystems (Chen
et al., 2011; Lenoir et al., 2019; Lenoir and Svenning, 2015; Mirtl et al.,
2018). Monitoring programs should help conservation and manage-
ment strategies based on explanatory as well as predictive models and
support the regular evaluation of the effectiveness of policy interven-
tions (Haase et al., 2018).

The development of monitoring design and management strategies
that account for the scale, pace, and complexity of anthropogenic im-
pacts on species and ecosystems (Ceballos et al., 2017; Dirzo et al.,
2014; Kim et al., 2018) requires assessments of past and current bio-
diversity changes as well as robust projections of the potential future
distributions of species and ecosystems (i.e., satisfactory accuracy and
precision of models transferred to novel conditions). Species Distribu-
tion Models (SDMs, sensu Guisan and Thuiller, 2005; Guisan and
Zimmermann, 2000, Box 1) provide a powerful explanatory and pre-
dictive modeling framework in this context. In conservation and deci-
sion-making, SDMs can for example be used as explanatory models
(sensu Shmueli, 2009) to identify critical environmental variables for

Two categories of SDMs can be distinguished: statistical (or statistical learning sensu Drake, 2014) and process-based models. Statistical SDMs
(sensuFranklin, 2010 also called habitat suitability models sensu Guisan et al., 2017) are methods that relate field observations or museum
specimens (e.g. occurrences, abundances, or species' traits) to environmental predictor variables. In such models, processes are empirically
inferred from a combination of statistically or theoretically derived response curves (Guisan et al., 2017). In contrast, process-based models
build upon explicit causal relationships determined experimentally. In these models, processes such as phenology and distribution are ex-
plicitly described (see Chuine and Régniére, 2017), which increases the confidence in extrapolating beyond the known spatiotemporal extent
(Zurell et al., 2016). The continuum between these two modeling approaches includes hybrid (e.g. Dullinger et al., 2012), dynamic range (e.g.
Cotto et al., 2017; Engler et al., 2012; Pagel and Schurr, 2012), and integrated models (Pagel and Schurr, 2012).
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species or communities (e.g. Droz et al., 2019), or for interpolating and
extrapolating potential geographic distributions from available ob-
servations of species or communities (McShea, 2014). These predicted
ranges can then be used in conservation planning to minimize the im-
pact of development (Guisan et al., 2013) and may be linked to bio-
diversity monitoring through frameworks such as Essential Biodiversity
Variables' (EBVs, Ferndndez et al., 2019; Pereira et al., 2013). SDMs
have further evolved to provide scenarios for past and future species
distributions and community composition, based on the use of en-
vironmental variables such as climate, land cover, and biotic con-
straints. This allows stakeholders to identify the natural resources they
want to sustain and assess the projected effects of environmental policy
options on the distribution of threatened, rare, flagship or invasive
species (e.g. Cianfrani et al., 2015, 2018; Esselman and Allan, 2011).
SDM projections can also indicate whether current protected areas or
networks of protected sites match with likely future species and com-
munity distributions (e.g. Araujo et al., 2004; Bolliger et al., 2007; Droz
et al., 2019). Collectively, these applications illustrate the high re-
levance of SDMs for biodiversity conservation and hence for meeting
the SDGs and the targets of the Convention on Biological Diversity.

However, there are numerous criticisms of current implementations
of SDMs, in particular when applied to assist biodiversity monitoring.
Such criticisms originate primarily from the reliance of both correlative
and process-based SDMs (see Box 1) on long-term, averaged, and in-
terpolated spatial climate variables, routinely used without accounting
for their temporal variability (Zimmermann et al., 2009). Moreover,
correlative models are calibrated on statistical relationships that fail to
capture the actual biological processes underlying the geographical
distributions of species and biodiversity (Dormann et al., 2012). Finally,
projections from both correlative and process-based SDMs are often
based on calibration datasets with limited spatial and temporal extent,
which restricts transferability of model projections (Werkowska et al.,
2017; Yates et al., 2018). Although hybrid and process-based distribu-
tion models (see Box 1) address flaws such as the causality between the
response and the predictors as well as the spatiotemporal transfer-
ability, these models are data intensive (and thus limited to few species)
and typically rely on climate interpolations.

The development of open access remote sensing data provides op-
portunities for resolving some of the limitations of SDMs. For example,
a large variety of products derived from various satellite sensors are
available to assess key natural systems, environmental conditions, and
extremes affecting the land surface in a contiguous spatial and temporal
fashion (Mahecha et al., 2017). These products thereby capture the
environmental processes that underlie the distribution of species and of
biodiversity, including land use and cover (e.g. Verburg et al., 2011),
forest cover (e.g. Hansen et al., 2008; Klein et al., 2015), vegetation
structure (e.g. Schneider et al., 2014), vegetation productivity and
phenology (e.g. de Jong et al., 2013; Garonna et al., 2018; Jolly et al.,
2005), snow (e.g. Hiisler et al., 2014; Xie et al., 2017), temperature (e.g.
Ibrahim et al., 2018), and precipitation (e.g. Naumann et al., 2012).
Additionally, continuous time series deliver observations over large
spatial extents and at ecologically relevant time scales, improving the
transferability of model projections and at least partially solving data
sparsity with respect to spatial and temporal resolution.

Some remote sensing data products are already used in SDMs (see
Franklin, 1995 for an early review), mostly as abiotic and biotic pre-
dictor variables and occasionally as response variables (see He et al.,
2015 for a comprehensive review). However, remote sensing and spe-
cies distribution modeling are still quite distinct fields that have not
typically overlapped extensively, resulting in a lack of awareness of
potential opportunities. Accordingly, we argue that remote sensing-

! Essential Biodiversity Variables are a minimum set of biodiversity state
variables required to study, report, and manage multiple facets of biodiversity
change (Pereira et al., 2013).
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derived data products are not yet used to their full potential and that
they can contribute more to the development of SDMs for biodiversity
monitoring and policy.

Here, we” first discuss how current developments in remote sensing
may improve our understanding and projections of species distributions
(see Section 2). This discussion is based on a selection of processes and
a prioritization of relevant literature, which by no means aims to be
exhaustive. We then suggest synergistic activities between the ecolo-
gical modeling and remote sensing communities (see Section 3). These
activities may serve to fill data and conceptual gaps and develop remote
sensing data products that can effectively contribute to the monitoring
and modeling of ecological systems and ultimately guide and inform
conservation and management strategies towards sustainability. Unlike
previous contributions (e.g. He et al., 2015), this paper is organized
around some of the key biophysical dimensions and processes (Mackey
and Lindenmayer, 2001; Pearson and Dawson, 2003) underlying the
distribution of species in the Anthropocene, such as climate variability
and land-cover change. As such, it is aimed at species distribution
modelers and remote sensing specialists who jointly want to better
support monitoring and conservation actions at different spatial and
temporal scales.

2. Modeling species distribution using remote sensing data: state-
of-the-art

Key processes and biophysical factors that underlie the distribution
of species in the Anthropocene and are required for modeling include
climate and its variability from the global to the regional scale
(Fig. 1(a), see Section 2.1), topo- and microclimate from the regional to
the local scale (Fig. 1(b), see Section 2.2), physical disturbance pro-
cesses modulating distribution at various scales (Fig. 1(c), see Section
2.3), and anthropogenic pressures (Fig. 1(d), see Section 2.4), such as
changes in land cover and land use. Additional factors that are not
explicitly discussed but merely mentioned throughout the text include
resource variables (e.g. water, food resources, and nutrient availability,
Austin and Van Niel, 2011). Climate and topography are often used as
proxies for these types of variables. Ideally, the predictor variables in
SDMs meet at least two of three requirements (holy grail, Fig. 1): spa-
tiotemporal contiguity (i.e., a process is fully covered in space and
time), intensity (i.e., the full range of variation of a continuous variable
is covered, including the extremes likely to impact on an organism's
traits and ultimately on its demography), and 3D-structure.

2.1. Climate and its variability

Climate has been consistently identified as the main determinant of
species ranges at the broad scale (Woodward, 1990), whereas non-cli-
mate predictors (such as topography and habitat) are more important at
finer scales (e.g. Luoto et al., 2007; Normand et al., 2009). It is there-
fore common to build large-scale and coarse-resolution SDMs to char-
acterize species geographic extents and spatial patterns of occurrence
using only climate predictors (see e.g. Mod et al.,, 2016 for plants;
Thuiller et al., 2005). This approach is commonly referred to as bio-
climatic envelope modeling and climate predictor variables are defined
as direct or regulator predictors (Fig. 1(a): Austin and Smith, 1989;
Guisan and Zimmermann, 2000). Yet, the spatial resolution at which
these models operate may be much greater than the processes experi-
enced by the species they model (Austin, 2002). Moreover, these cli-
mate predictor variables are also routinely used without accounting for
their measurement errors and uncertainty, which can lead to biased

2This publication is the result of a workshop supported by the European
Space Agency and Future Earth that brought together participants from the
ecological modeling, biodiversity, land systems science, and remote sensing
communities.
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Fig. 1. Main categories of predictor variables in SDMs and requirements they (could) meet. Variables consist of regulators (a, b), physical disturbances (c), and direct
anthropogenic pressures (d) (sensu Austin and Smith, 1989; Guisan and Zimmermann, 2000; Randin et al., 2009¢). Requirements are contiguity, intensity, and 3D
structure. Categories of predictor variables point with continuous lines to requirements they can currently meet and with dotted lines to requirements they could

meet with the integration of remote sensing data.

estimates and erroneous inferences (Stoklosa et al., 2015). In addition,
temperature and precipitation interpolations from weather stations
(e.g. Worldclim, https://www.worldclim.org/) capture neither tem-
perature-related processes, such as inversion, air stagnation (Vitasse
et al.,, 2017) or cold air pooling (e.g. Patsiou et al., 2017), nor pre-
cipitation-related processes, such as orographic effects (Fernandez
et al., 2015; but see CHELSA Karger et al., 2017). Current remote
sensing products capture some of these physical patterns. For example,
the Operational land Imager (OL) on Landsat8 and the Moderate Re-
solution Imaging Spectroradiometer (MODIS) on TERRA and AQUA
provide data for surface temperature and missions such as the Tropical
Rainfall Measuring Mission (TRMM) and Global Precipitation Mission
(GPM) provide data for precipitation (e.g. at the scale of the Andes;
Bookhagen and Strecker, 2008). Such data have already been success-
fully integrated in SDM studies (e.g. Cord et al., 2010; Estrada-Pefia
et al., 2016; Neteler et al., 2013). Alongside the development of im-
proved remote sensing data products, considerable advances have also
been achieved in terms of the algorithms needed to process remote
sensing data. For instance, algorithms for deriving land surface tem-
perature are now sufficiently advanced that a typical accuracy of 1
Kelvin is possible with data acquired at around 100 m resolution from
recent Landsat satellites. Such high spatial resolution surface tem-
perature data can ultimately be used to detect local features such as
urban heat islands (Liu et al., 2011), which are key components for the
persistence or extinction of plants and animals. Land surface tempera-
ture derived from remotely sensed datasets can substantially improve
projections of SDMs (Deblauwe et al., 2016). However, depending on
the spatial resolution and the post-processing approach, temperature
data derived from remote sensing might integrate a mix of surfaces such
as rock, tree canopy or grassland. The standardized shaded 2 m air
temperature sensors in turn, which deliver the temperature data to
which the occurrence or abundance of species are mostly related in
SDMs, face limitations due to interpolation of temperature data be-
tween weather stations that can be sparse and placed in very specific

locations (e.g. low altitudes, Hik and Williamson, 2019).

Similar challenges exist for precipitation data. Precipitation data
derived from sensors still rely on the ground projected spatial resolution
of the data and the addition of ground observations (e.g. TRMM at a
0.05° native resolution versus Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) at a 0.25° resolution and ca-
librated with 45’707 weather stations worldwide). In addition, pre-
cipitation is measured precisely but locally with water gauges, whereas
currently available satellite sensors detect rainfall patterns at resolu-
tions > 1 km. As a consequence, both satellite sensors and interpola-
tions from direct measurements are not able to adequately capture
small-scale processes (e.g. orographic processes) that influence species
distribution (Deblauwe et al., 2016; Lenoir et al., 2017). Additionally,
rainfall is usually an indirect predictor, whereas variables reflecting soil
water budget or snow cover and depth are more direct predictors.

Climate also enters SDM-based studies in the form of long-term
averaged variables used to define range limits. However, such averages
overlook information contained in the distribution of climate values,
including climate extremes of increasing frequencies, whose influence
on range limits remains to be fully understood (Ummenhofer and
Meehl, 2017). Accordingly, Kollas et al. (2014) called for the use of
temperature extremes during key phenological stages of focal species
when attempting to explain range limits. Zimmermann and co-authors
Zimmermann et al., 2009 (2009) showed that the primary effect of
including information on climate variability and extremes is to correct
local SDMs for over- and underprediction. Such results speak in favor of
the incorporation of targeted absolute climate values instead of long-
term means that are only proxies of unknown relevance for the phy-
siologically critical facets of climate that control species abundances
and distributions. They also have important implications for projections
of climate-change impacts on species distributions that are based on
correlative approaches only. Relevant data for deriving extremes are
spectral time series. With such series approaching 20 years of records
and daily time steps, it is now becoming possible, for example, to use


http://https://www.worldclim.org/
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land surface temperature from remote sensing to derive extreme cli-
matic events. The Global Climate Observing System (GCOS, https://
gcos.wmo.int/en/home) was specifically set up under the auspices of
UN organizations and the International Council for Science to ensure
the availability of so-called Essential Climate Variables (ECV, GCOS
2010), which are systematic and long-term observations of climate®
Specific ECVs of interests for the SDM community include land surface
temperature, precipitation, snow, glaciers, permafrost, albedo, land
cover, fraction of absorbed photosynthetically active radiation
(FAPAR), Leaf area index (LAI), above-ground biomass, soil carbon,
fire, and soil moisture. For the latter, a global ECV surface soil moisture
data set has been generated within the European Space Agency (ESA)
Climate Change Initiative. This soil moisture dataset covers a 38-year
period from 1978 to 2016 at a daily time step and at a 0.25° spatial
resolution. Snow, high-resolution land cover, surface temperature and
permaforst are other ECVs currently developed by ESA (http://cci.esa.
int/). Similar initiatives have also been developed at smaller scales. The
Sentinel Alpine Observatory of Eurac Research (SAO, http://sao.eurac.
edu/sao/) and satellite-based snow cover climatology (Hiisler et al.,
2014) are two examples for the European Alps. Yet, although the
temporal resolution might be appealing for the SDM community, ty-
pical spatial resolutions of 0.25° (at best 500 m) do not match the re-
quirements for safe calibration and projections of SDMs for many or-
ganisms, calling for further data integration (Lembrechts et al., 2019);
Zimmermann et al., 2009

2.2. Topography

When SDMs are calibrated only with climate data at a low spatial
resolution (e.g. Worldclim; ~1-km grid cells), their fit and predictive
power are often improved by incorporating additional predictors (Luoto
and Heikkinen, 2008; Pradervand et al., 2014), or by enhancing them to
consider finer-scale processes (e.g. topoclimate, Daly, 2006; Karger
et al., 2017). One important predictor is the topography, which locally
controls biota, habitat structure, and growing conditions (albeit mostly
indirectly, Austin and Van Niel, 2011). It does so primarily by affecting
local climate (< 1 km?) through elevation (adiabatic lapse rate), ex-
posure (to solar radiation and wind), and cold air pooling (Bohner and
Antoni¢, 2009), but also through its effect on soil development, causing
spatial variability in soil depth and nutrient as well as water availability
(Fisk et al., 1998).

Topography-related indirect variables (sensu Guisan and
Zimmermann, 2000), such as slope or topographic position, or more
direct variables such as potential solar radiation are broadly used in
SDMs and evolutionary ecology (Kozak et al., 2008; Leempoel et al.,
2015). The topographic wetness index is also a commonly used proxy
for soil moisture (see e.g. le Roux et al., 2013a). Including these vari-
ables improves SDMs, but interpreting the actual drivers of species
distributions related to these variables can be difficult. Topographic
data are indeed only surrogates for direct environmental controls of
occurrence and abundance and the effects of topographic variables on
plant distributions are therefore distal (sensu Austin, 2002, 2007; Mod
et al., 2016; Moeslund et al., 2013). Improvements are also scale-de-
pendent as topographic variables that make sense over a small geo-
graphic area can become problematic at broader scales if they are not
linearly related to the environmental factors for which they serve as
proxies. Regardless of scale, the problem with using indirect (i.e. distal)
predictors of topography is that the identified relationships are in-
herently non-causal, which therefore reduces model transferability in
space and time. This limitation also applies for other predictor variables
based on climate or land cover, notably when SDMs are calibrated for

3 An Essential Climate Variable is a physical, chemical, or biological variable
or a group of linked variables that contributes to the characterization of the
Earth's climate (Bojinski et al., 2014).
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species situated at high trophic levels.

One solution to this problem is to utilize more direct and causal
predictors or resource variables (Austin, 2002; sensu Guisan and
Zimmermann, 2000). For example, SDMs can be calibrated with nu-
trient status (Bertrand et al., 2012; Buri et al., 2017; Coudun et al.,
2006; Dubuis et al., 2013; Vries et al., 2010) as well as fine resolution
climate predictors based on topography and remote sensing-derived
estimates of vegetation cover (Ashcroft and Gollan, 2011; Lenoir et al.,
2017). Digital elevation models, in turn, can be used to directly esti-
mate cold-air drainage, which can lead to improved predictions of
species distributions over indirect estimates of topography (Ashcroft
et al., 2014; Patsiou et al., 2017). Remote sensing offers another solu-
tion. Relevant accurate high-resolution terrain data (Jaboyedoff et al.,
2012; Leempoel et al., 2015) are increasingly obtained using Light
Detection and Ranging (LiDAR) technology (e.g. Mathys et al., 2004;
Sgrensen and Seibert, 2007; Vierling et al., 2008). The benefits of
LiDAR are specifically related to its capacity to detect minor terrain
features, such as hill tops, ridges, small depressions, and minor hy-
drological features (Engstrom et al., 2005; Kammer et al., 2013;
Kemppinen et al., 2018), which are expected to play an important role
in determining species distribution (Graf et al., 2009; Pradervand et al.,
2014). Moreover, high point return densities (1-10 points/m) and re-
lative ease of data collection across large areas makes LiDAR a popular
option for measuring bare earth elevation and vegetation height
(Hancock et al., 2017). However, the accuracy of LiDAR-derived digital
elevation models can vary considerably across topographic and land-
cover gradients (Leitold et al., 2015). For instance, it is common to
achieve high elevation accuracies (< 0.15 m root mean square error) in
areas with low vegetation cover and relatively flat terrain (Montané and
Torres, 2006; Spaete et al., 2011), but elevation errors in digital ele-
vation models tend to increase in areas covered by dense vegetation.
Further work is required to determine how these errors in elevation are
propagated to the direct predictors that are desirable in SDMs (cold air
drainage, vegetation structure, exposure to winds and radiation, mi-
croclimate) and to the SDM itself.

Unlike high-resolution topographic information, the availability of
spatial layers of soil conditions is still limited (Fang et al., 2016). Yet,
spaceborne multispectral and imaging spectroscopy instruments have a
high potential for mapping topsoil carbon (Pedn et al., 2017) and or-
ganic matter content as well as soil physical properties (Rosero-Vlasova
et al., 2018). These novel possibilities should be tested in SDMs in the
future.

2.3. Physical disturbances

Physical disturbances include geomorphological disturbances such
as fluvial erosion, nivation, landslides, rock falls, and other dis-
turbances such as mechanical abrasion by wind or fire.
Geomorphological processes in particular create a wide range of dis-
turbance regimes across landscapes (Aalto et al., 2017; Gooseff et al.,
2003; Niittynen and Luoto, 2018) that may significantly alter local soil
stability, moisture conditions, and nutrient availability (Koztowska and
Raczkowska, 2002). Due to ongoing land-use and climate change, these
disturbance regimes are predicted to change rapidly as many geomor-
phical processes have a significant climate response (Knight and
Harrison, 2013), with small changes in climate forcing triggering large
changes in Earth system processes (Aalto et al., 2017). Accordingly,
Earth system processes potentially represent key drivers of local habitat
heterogeneity (Cannone et al., 2016), variation in ecosystem func-
tioning (Frost et al., 2013), and species assemblages (le Roux et al.,
2013b; Malanson et al., 2012).

Recent studies demonstrate that the incorporation of direct Earth
system processes variables — as opposed to the indirect topographic and
soil surface properties used as surrogates in plant SDMs (Dirnbock et al.,
2003; Mellert et al., 2011) - can improve the explanatory and pre-
dictive power of SDMs (le Roux et al., 2013b; le Roux and Luoto, 2014;
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Niittynen and Luoto, 2018; Randin et al., 2009a). However, the type
and necessity of including disturbance variables in models are highly
environment-specific. For decades, remote sensing data have been used
for the mapping of geomorphological landforms and processes (Walsh
et al., 1998). The high spatial resolution of airborne photographs pro-
vides a valuable data source in that context, particularly for detecting
smaller landforms (e.g. 1-10 m). Yet, the precision (< 10 m) and in-
creasing temporal resolution (revisit time of 1-5 days) of satellite data,
such as WorldView 3 (http://worldview3.digitalglobe.com), the Pla-
netscope satellite constellation (https://www.planet.com), or open ac-
cess ESA Sentinel-2 (https://sentinel.esa.int), can now compete with
that of aerial photography. High-resolution satellite imagery is thereby
becoming a valuable data source for the modeling of dynamic pro-
cesses. Attempts to include remote sensing-based geomorphological and
other non-anthropogenic physical disturbances into SDMs include
Miller and Franklin (2002) with landforms derived from a digital ele-
vation model, and Connell et al. (2017) as well as Madani et al. (2016)
for fire.

2.4. Direct anthropogenic pressure

The availability of spatially and temporally highly resolved land-
cover information is central to many monitoring programs and land-
cover mapping is probably one of the oldest application of remote
sensing, starting with aerial photographs from hot air balloon in the
1860's and from airplane in the 1910's (Fuller et al., 1994). Assessments
of changes in land systems range from local to regional and global
(Stiirck and Verburg, 2017; van Asselen and Verburg, 2013) and from
historical (Bolliger et al., 2017; Kaim et al., 2016; Loran et al., 2017) to
predictive, with scenario-based assessments of potential future changes
in land use (Martinuzzi et al., 2015; Paztr and Bolliger, 2017; Price
et al., 2015).

Changes in land cover and land use affect biodiversity in different
ways. In the case of urbanization, there is usually a complete replace-
ment of (semi-)natural open land with buildings or other impervious
infrastructures such as roads, which profoundly changes species dis-
tributions (Lembrechts et al., 2017). However, impacts on species dis-
tributions or abundances can also be triggered by other forms of land
use and land management such as slash and burn cultivation or de-
forestation, or by modification of their intensity (e.g. agricultural
practice, Randin et al., 2009b). Both the detection of changes in land
cover and the differentiation between changes in land cover and land
use are difficult. Yet progress has been made over recent years using
change patterns in remotely sensed data as indicators of change in
management and land-use intensity (Eckert et al., 2017; Franke et al.,
2012; Gémez Giménez et al., 2017; Jakimow et al., 2018; Rufin et al.,
2015). Examples include the mapping of grassland mowing frequencies
through the identification of typical variations in greenness during the
growing season (Kolecka et al., 2018), observed agricultural in-
tensification in Kenya through the successful long-term monitoring of
rainfed and irrigated agriculture using monthly satellite data compo-
sites (Eckert et al., 2017), or the occurrence of plantation forests in in
the southeastern United States based on high-resolution spatial patterns
(Fagan et al., 2018).

Until recently, small or heterogeneous areas important to landscape
structure and land-use management were not detected due to low
spatial, spectral, and temporal resolution. These limitations are par-
tially addressed with spatially, spectrally, and temporally highly re-
solved instruments such as on the ESA Sentinel-2 constellation. Every
five days, these sensors provide global coverage of the land surface at a
spatial resolution of 10, 20, and 60 m (depending on spectral band
setting and product definition).

However, in spite of the novel developments and achievements of
remote sensing, limitations will persist in observing land management
practices relevant to biodiversity. Proper characterization of land-cover
and land-use change faces the difficulty of the ‘curse of dimensionality’.
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By improving any of the spatial, spectral or temporal resolutions of an
Earth observation instrument, exponential increase of the other two
remaining dimensions is needed to properly describe the dimensionality
of the signal per se. Currently, data integration, fusion or multi-mod-
ality seems to hold most promise. Examples of such approaches are
provided by Van Asselen and Verburg (2013), Price et al. (2015), See
et al. (2015), and Estel et al. (2018).

Land cover and land use have traditionally relied on two-dimen-
sional (2D) representations of the environment. Yet, 3D vegetation
structure not only allows for more continuous landscape representa-
tions but is also a crucial determinant of species habitat (Fawcett et al.,
2018; Gastén et al., 2017; Huber et al., 2016; Milanesi et al., 2017;
Torabzadeh et al., 2014; Zellweger et al., 2016) and functional con-
nectivity (Marrotte et al., 2017; Milanesi et al., 2017). Such evidence
stresses the need for more detailed landscape-content information and
for 3D structure information to supplement habitat assessments. These
structures are captured using digital aerial photogrammetry (Ginzler
and Hobi, 2015) or active remote sensors, e.g. LiDAR (Bergen et al.,
2009; Merrick and Koprowski, 2017). 3D structure represented as
morphological traits are increasingly combined with physiological
traits allowing for the modeling and prediction of substantial detail on
functional diversity (Asner et al., 2017; Schneider et al., 2017) as well
as light interaction within the 3D canopy (Schneider et al., 2019).

Moving from simple land-cover representations to more species-re-
levant representations of land use requires advances in remote sensing
and integration with other data (Wulder et al., 2018). Yet, following
Franklin et al. (2014) and others (Boulangeat et al., 2014; Martin et al.,
2013; Newbold, 2018), adaptations are also needed for SDMs to prop-
erly account for such novel landscape representations and address not
only climate change (Titeux et al., 2016) but also land-use change.
Increasing the detail in landscape characterization not only requires
SDMs to be capable of addressing the represented diversity, but it also
requires understanding of the temporal dynamics and climate responses
of land use at a higher level of detail. To avoid overwhelming and
sometimes unnecessary complexity, the sensitivity of the SDMs to the
refined detail should be continuously tested and simplifications made as
part of the modeling process.

Besides land-use composition, land-use configuration can in some
cases represent a good proxy for those species requiring corridors and
landscape borders to survive (e.g., Neilan et al., 2019; Vinter et al.,
2016). Accordingly, the heterogeneity of land-use or of satellite re-
flectance data has been widely assessed in the past, using various al-
gorithms and metrics such as multivariate statistical analysis (Feilhauer
and Schmidtlein, 2009), the spectral species concept (Féret and Asner,
2014), self-organizing feature maps (Foody, 1999), multidimensional
distance metrics (Rocchini et al., 2016), and Rao's Q diversity (Rocchini
et al., 2017). Each of them addresses one or several issues related to
heterogeneity measurements. These can then be incorporated as metrics
of land-cover heterogeneity and land-cover change into SDMs to drive
future predictions, such as in Coops et al. (2016).

3. Modeling species distribution using remote sensing data:
closing gaps and moving forward

We are coming to an era of cost-efficient mass processing of high-
resolution remote sensing data products over extensive geographical
areas and long periods of time (Hansen et al., 2013). This coincides
with the increasing demand for reliable, spatially comprehensive and
time-sensitive information on the status of and trends in biodiversity
(Navarro et al., 2017) and the urgent need to achieve significant pro-
gress towards sustainability. Remote sensing data are increasingly re-
commended for and applied to biodiversity monitoring and conserva-
tion (e.g. see Alleaume et al., 2018; Lausch et al., 2016; Rocchini et al.,
2016; Schneider et al., 2017; Schulte to Biihne and Pettorelli, 2018;
Vihervaara et al., 2017). In this context, such data are used notably in
the monitoring of EBVs (e.g. see Alleaume et al., 2018; Fernandez et al.,
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Fig. 2. Temporal stacking of imaging spectroscopy, thermal or radar images for improving response curves of statistical (a and ¢) and process-based (b and d) models.
Thermal response curves derived from statistical models (a) describe the realized thermal niche of species whereas experimental thermal performance curves are
closer to the thermal fundamental niche, thus potentially increasing the transferability of such relationship in space and time. The response curve from statistical
models in (a) is calibrated with presence (black crosses) and absence (black circles) data. Thermal performance curve of a phenological phase in (b) derived from
phenological observations (black triangle). Time series of remote sensing images potentially allow increasing the number of observations for both calibrating thermal
response curves of statistical SDMs (c) and thermal performance curves used in process-based models (d). In (c), presences and absences are extracted from remote
sensing data, thus allowing the derivation of a high number of observations and to calibrate a response curve closer to the thermal performance curve. Similarly, in
(d), phenological observations are derived from remote sensing data, allowing estimating the spatiotemporal variability of the performance curve caused by e.g. local
adaptation (green surface on d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2019; Pettorelli et al., 2016) and the adoption of systematic observation
requirements is steadily improving (Navarro et al., 2017; Pettorelli
et al., 2016; Skidmore et al., 2015). However, the use of remote sensing
data in the reporting on individual sustainable development goal in-
dicators is not systematic. For instance, whereas the methodologies to
assess progress on “forest area as a proportion of total land” (SDG
15.1.1), “sustainable forest management” (SDG 15.2.1), “proportion of
land that is degraded over total land area” (SDG 15.3.1), or “mountain
green cover index” (SDG 15.4.2) are largely or fully based on remote
sensing data, this is not the case for reporting on the “coverage by
protected areas of important sites for mountain biodiversity” (SDG
15.4.1). Here we discuss joint ventures between the ecological mod-
eling and remote sensing communities that could ultimately contribute
to improving as well as accelerating the modeling and prediction of
species' distributions across large spatial scales and the delivery of re-
liable information for reporting on progress towards specific sustain-
able developments goals such as SDG 15.4.1. The joint ventures we
propose pertain to time series and temporal stacking (see Section 3.1,
Fig. 2), the direct detection and sampling of species and their traits (see
Section 3.2), the improvement of integrated and dynamic range models
(see Section 3.3, Fig. 3), and the prediction of belowground processes,
disease, and biotic interactions (see Section 3.4).

3.1. Time series and temporal stacking

Most SDM studies that have included remote sensing data products
so far have used static and temporally aggregated remote sensing-de-
rived layers as predictors (e.g. land surface temperature, water avail-
ability, topography, land cover, and 3D structure, Section 2). Fewer
attempts have been made to take advantage of the existing time series
data and the dynamic information contained in remote sensing data
products (Ferndndez et al., 2016; Pinto-Ledezma and Cavender-Bares,
2020), despite the pivotal role that such temporally explicit data play.
For instance, long-term time series of remote sensing data are key to
test the temporal transferability of SDMs (Yates et al., 2018), a basic
requirement to formally guide and inform monitoring strategies in
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changing environments and make sure that model projections follow
the observed trajectories of species. Likewise, long-term observations of
response variables, such as occurrences or abundances of focal organ-
isms, are essential to understand and project the impact of global
change with SDMs. Andrew and Ustin (2009), Bradley and Mustard
(2006), or Malavasi et al. (2019) provide examples of the integration of
occurrence data derived from remote sensing into SDMs. The avail-
ability of long time series from satellites or cost-effective tools such as
Unmanned Aerial Vehicles (UAVs, e.g. Kellenberger et al., 2018) will
undoubtedly lead to a rapid increase in such applications. Finally, long-
term time series are also critical for estimating lag times. The Anthro-
pocene is an era of rapid environmental changes. Under such condi-
tions, lag times in cause-effect chains may severely confound the
identification of species-environment relations via correlated distribu-
tion patterns. Rapid climate change, for example, is expected to cause a
severe disequilibrium between climate and species distribution due to
both slow colonization of areas that become newly suitable and delayed
extinction from those sites that are no longer suitable to the species
(i.e., extinction debts; Dullinger et al., 2012; Svenning and Sandel,
2013; Talluto et al., 2017). Land-use changes may have similar effects
and many studies have demonstrated that in landscapes undergoing
changes in human usage, spatial biodiversity patterns often represent
habitat configurations of decades back rather than current ones (Auffret
et al., 2018; Krauss et al., 2010). Matching current species distributions
and environmental conditions in statistical models will hence result in
flawed correlation and, as a corollary, inappropriate prediction of fu-
ture development. Remote sensing products offer a way forward here,
because time series of many of these products now cover two decades,
and several of them up to five (He et al., 2015). These time series have
great potential in detecting and quantifying lag times, e.g. in the re-
sponse of biological populations to land-cover conversions (Wearn
et al., 2012). Incorporating these lag times into models of species re-
sponses to past, current, and future environmental change has im-
portant ramifications for the management of biodiversity because it
defines ‘windows of opportunity’ for mitigating the anticipated con-
sequences (Kuussaari et al., 2009; Wiens et al., 2015).

Airborne cameras
and LiDar

lon

lon

Time

Fig. 3. Acquisition of demographic parameters for dynamic range models with time series of multispectral and/or imaging spectroscopy and airborne laser scanning
data (a). The combination of such data allows tracking movements of animals in suitable habitats and capturing demographic processes (b, Gaillard et al., 2010).
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One reason for the limited transferability of purely correlative
models is the generally coarse or inadequate spatial and temporal re-
solution of the data used to calibrate models (Connor et al., 2018;
Manzoor et al.,, 2018; Potter et al.,, 2013). This spatial-resolution
paradox (Lenoir et al., 2017) is inherent to correlative models and stems
from the spatial mismatch between the resolution at which the pre-
dictor variables (e.g. biophysical variables, see Section 2) are available,
the resolution that matches the response variables (e.g. species occur-
rence, presence-absence, abundance or trait data; Guisan and Thuiller,
2005), and the size of the studied organism (Potter et al., 2013).

Here, we argue that remote sensing could be used to better calibrate
SDMs, by integrating spatially and temporally (through multiple years)
more proximal environmental data to derive more comprehensive
quantifications of species' response curves along environmental gra-
dients (see Austin and Gaywood, 1994). An improved calibration pro-
cess may in turn increase the spatial and temporal transferability of
both correlative and process-based models. This can be illustrated by
focusing on environmentally-specific species response curves, such as
temperature response curves (sensu Austin, 2002; Fig. 2(a)) and thermal
performance curves (sensu Schulte et al., 2011; Fig. 2(a)-(b)) that are at
the foundation of both correlative (Guisan and Zimmermann, 2000)
and certain types of process-based (Kearney and Porter, 2009) models,
respectively. Temperature response curves generated by SDMs are
usually parameterized through the statistical relationship between field
observations and spatial layers of temperature. Temperature perfor-
mance curves used in process-based models, on the other hand, are best
parameterized from experimental data depicting metabolic require-
ments, usually in the absence of competition (e.g. Chuine and Beaubien,
2001). Because they explicitly rely on a physiological basis, tempera-
ture performance curves are expected to better identify species thermal
tolerance limits that set range boundaries and to be thus more robust
when extrapolating species redistributions under future climate change
(Eckert et al., 2017). However, physiologically-based species perfor-
mance curves represent the fundamental rather than post-interactive
realized niches of species (Hutchinson, 1978; Pulliam, 2000). Such
performance curves are not as time- and cost-efficient as statistically-
based species response curves. For some species, the quantification of
statistically-based performance curves by the integration of remote
sensing data (Fig. 2(c)) might better inform on the real microhabitat
conditions experienced by living organisms, and thus might help to
capture species' response curves that are closer to the fundamental re-
sponses (response niche; Maiorano et al., 2013; e.g. for dominant late-
successional species; Pearman et al., 2008) obtained from experiments.
Hence, the integration of remote sensing data into SDMs has the po-
tential to generate more transferable SDMs (Maiorano et al., 2013).
Similarly, the combination of experimental and remote sensing data
(i.e. the combination of fundamental and realized niches) through e.g.
the direct use of land surface temperature to derive thermal perfor-
mance curves could better capture the geographic variability caused by
local adaptations (Fig. 2(d)).

Temporal stacking of remote sensing images (e.g. spectroscopy,
thermal or radar images; Fig. 2) allows more observations of both re-
sponse and predictor variables to be obtained and can be used to reduce
the temporal mismatch between these variables (e.g. George et al.,
2015). This in turn allows the generation of more comprehensive re-
presentations of the realized response curves. Images from imaging
spectroscopy in particular can be used to gather a large amount of
occurrence, abundance, and trait data (Lausch et al., 2019; e.g. van
Ewijk et al., 2014). Conversely, remote sensing data can also be used to
develop more accurate estimates of elevation, microclimate, and other
direct environmental predictors (see Section 2.2), which will improve
estimates based on coarse-scale climate grids or indirect predictors
alone.

Similarly, process-based distribution models such as Phenofit that
integrate phenology and frost resistance for instance (Chuine and
Beaubien, 2001) also strongly rely on experimental response curves
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(Fig. 2(b)). As a consequence, responses such as the completion of a
phenological phase as a function of temperature are usually limited to a
restricted set of plant species for which data are available. When remote
sensing data cover large geographic extents, the same combination of
temporally-stacked remote sensing images could potentially help ex-
tend such models to more species and take into account the variability
due to local adaptation.

It is also important to note that the spatiotemporal accuracy of
species' occurrence, presence-absence or abundance data collected from
field observations need to be at least as high as the spatiotemporal re-
solution of the predictors used to fit the model to ensure robust model
transferability (Manzoor et al., 2018). Optimizing environmental and
biological monitoring for better data availability is hence key for the
usefulness of remote sensing in SDMs (Bush et al., 2017). A promising
development is the European research infrastructure for Long-Term
Ecological Research (http://www.lter-europe.net/elter-esfri), which is
being rolled out during the coming years to provide the combined in situ
data needed for future SDM improvements (Haase et al., 2018; Mirtl
et al., 2018).

3.2. Direct detection and sampling of species and their traits

The direct detection of species using full-range (400-2500 nm)
spectroscopic data (Féret and Asner, 2014) is becoming increasingly
accurate, notably for trees but also for smaller organisms such as
bryophytes (Skowronek et al., 2017). However, the spatial resolution of
data collection remains critical and successful detection will likely re-
main limited to certain lifeforms and groups of species in the near fu-
ture. Beyond the detection of species, new possibilities are also emer-
ging for capturing plant functional types using spectroscopy (Ustin and
Gamon, 2010). Accurately mapping of some functional traits such as
canopy traits (Asner and Martin, 2009; Singh et al., 2015) and changes
in other plant traits (Jetz et al., 2016; Schneider et al., 2017) is now also
possible. Direct species detection and the link of spectra to the tree of
life (Cavender-Bares et al., 2017) can equally be achieved by using a
combination of high spatial and high spectral resolution. Spectra from
leaves (Cavender-Bares et al., 2016; Deacon et al., 2017) can be used
with high accuracy to differentiate populations within a species and to
separate hybrids from parental species. Partial Least Squares Regression
methods applied to spectral profiles differentiate species with higher
accuracy than genotypes and clades with higher accuracy than species
(Cavender-Bares et al., 2016). In some cases, with 1 m? spatial re-
solution remote sensing allows differentiation of different genotypes of
poplar clones (Madritch et al., 2014). Tree canopies are likely to be well
distinguished if functional information on morphology and physiology
at species level is available (Torabzadeh et al., 2019). In recent years,
the use of remote sensing has enabled great advances in both functional
as well as scaling-based approaches (Gamon et al., 2019; Malenovsky
et al., 2019). In forests where species groups are well characterized and
occur in clumps, species distributions can be fairly readily mapped
using satellite-derived data (Chastain and Townsend, 2007). Many
living resources exist that contain geolocated and botanically identified
trees for developing spectral libraries for tree canopies.

UAVs or drones are mainly used to capture data with limited
spectral resolution, to acquire thermal data, or to produce very high-
resolution digital elevation models by means of stereophotogrammetry
(Coops et al., 2019). UAVs can notably serve to overcome the issue of
partially missing spectral resolution with high-density time series
(Bohler et al., 2019). Multi-View Stereo analysis (Furukawa and Ponce,
2010) and Structure-from-Motion (Westoby et al., 2012) algorithms are
increasingly used as they make it possible to estimate 3D structures
from partly overlapping image sequences. These approaches are very
useful to analyze forest and vegetation structures (Webster et al., 2018)
and also to model marine environments including the complex structure
of coral reefs (Ferrari et al., 2016), a domain of particular interest in the
current period of intense coral bleaching (Walsworth et al., 2019).
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Another function is the collection of animal occurrences to calibrate
SDMs with presence only or presence/absence data. Van Gemert et al.
(2015) evaluated how animal detection and animal counting could be
implemented on the basis of a combination of images acquired by
drones and state-of-the-art object recognition methods. Most of the
time, such images are used to carry out surveys and to count animals in
management or conservation projects (Hodgson et al., 2018; Koh and
Wich, 2012). However, as all UAVs are equipped with a GPS device, the
exact location of investigated individuals can also be retrieved from
precisely georeferenced image data. The main challenge is related to
the detection and recognition of the correct species by means of ma-
chine learning algorithms (Kellenberger et al., 2018; Ofli et al., 2016;
Rey et al., 2017). Beyond this step, the generation of presence/absence
of a single taxon is straightforward. This is a component included in the
concept of Next Generation Species Distribution Models proposed by He
et al. (2015).

3.3. Improving integrated and dynamic range models

Demographic processes and demographic data are increasingly in-
tegrated into models of the spatiotemporal dynamics of species' ranges.
This results from the realization that considering dynamic aspects is
important and potentially markedly improves the quantification of
ecological niches, the process-based understanding of range dynamics,
and the forecasting of species responses to environmental change (Pagel
and Schurr, 2012). This is because commonly-used static SDMs ignore
spatial population dynamics, which can cause mismatches between
species niches and species distributions (Holt, 2009; Pellissier et al.,
2013). The data needed to parameterize dynamic range models can be
obtained from demographic field measurements and small-scale ex-
periments. However, small-scale environmental responses are not ne-
cessarily transferable to the spatial and temporal scales of dynamic
range models. In this context, time series of multi-spectral, imaging
spectroscopy, and LiDAR data (Fig. 3(a)) can help to quantify changes
in the environment of the focal and modeled species such as changes of
suitable vegetation (Strecha et al., 2012; Fig. 3(b)) or 3D structures
such as buildings or tree canopy height (e.g. Droz et al., 2019;
Fig. 3(b)). Knowledge of suitable areas for, and population size of,
animals in large wildlife reserves helps park rangers and managers in
their efforts to protect endangered species (Guisan et al., 2013). How-
ever, correlative SDMs rely on the assumptions that species location
data used for modeling are representative of a species' true distribution
and that observed species distributions are in equilibrium with en-
vironmental factors that limit those distributions. To better support
conservation practice, conservation biogeography should thus favor
dynamic range models and metapopulation dynamics rather than cor-
relative SDMs. However, the more detailed information needed for
dynamic range models (e.g. manual animal censuses) is expensive and
sometimes potentially dangerous to collect. Hence, UAVs with con-
sumer level digital cameras are becoming a popular alternative tool to
estimate populations of large mammals (Fig. 3(a); Kellenberger et al.,
2018). Furthermore, such data allow the modeling of metapopulation
dynamics (Fernandez et al., 2016) and species migration in order to
understand the ability of a species to occupy suitable habitat in new
locations. At the same time, movements of species can be linked to
landscape disturbance and succession also obtained by remote sensing
and models of habitat suitability (Fig. 3(b); Franklin, 2010).

3.4. Predicting belowground processes, disease and biotic interactions

Valuable information on belowground processes, disease, and biotic
interactions can be obtained from imaging spectroscopy data. Carbon-
based defense traits can be retrieved from spectral information
(Couture et al., 2016), facilitating integration of information on host-
specific herbivores and pathogens with leaf chemical composition.
Variation in biomass and leaf chemistry, including condensed tannins,
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lignin, and nitrogen should be linked to the chemistry of below-ground
root exudation and to litter chemistry and litter abundance (Cavender-
Bares et al., 2017). These inputs from aboveground vegetation to soil
influence substrates available as food for soil organisms, the activity of
enzymes secreted by soil microorganisms, and thus decomposition and
nutrient cycling (Madritch et al., 2014), which are all important for
species distribution. An example of the use of imaging spectroscopy in
the context of biotic interactions is that of the detection of declines in
hemlock (Tsuga canadensis) stands in the eastern United States due to
invasion of the exotic woolly adelgid (Adelges tsugae) (Hanavan et al.,
2015). Recent work has also shown that a combination of imaging
spectroscopy and thermal data can be used to diagnose Xylella fastidiosa
plants that are visually asymptomatic (Zarco-Tejada et al., 2018), and
that airborne imaging spectroscopy can be used to track the spread of
invasive submerged aquatic vegetation at high spatial resolution
(Santos et al., 2016). These examples, and others from the early de-
tection of moss species (Skowronek et al., 2017) and the assessment of
ecosystem processes in forests (Ewald et al., 2018) illustrate the high
potential of leveraging the rich information content of imaging spec-
troscopy data for the description of biotic environments in SDMs.

4. Conclusions

In their review, He et al. (2015) discussed the importance of remote
sensing data for the development of new predictor variables and the
next generation of SDMs, which will include spatially explicit values of
uncertainty. Here we argue that an additional value of remote sensing
data lies in their temporal coverage (see Section 3.1, Fig. 2), which
could overcome the inability of current temporally-aggregated vari-
ables to reflect the intensity or the frequency of biophysical processes
and contribute to fulfilling all requirements across variables (Fig. 1).
Taking advantage of long-term time series of remote sensing data to
extract (absolute) extremes as well as frequencies and improve both
these variables and the models in which they are used would be an
avenue to explore through formal evaluation and model improvement
(e.g. Zimmermann et al., 2009).

Temporal stacking of available time series (see Section 3.1, Fig. 2)
can also be performed to better capture the realized niche of species,
their actual rather than potential distributions, and increase the trans-
ferability of SDMs. In this context, evidence exists that building the
niche as an ensemble through time allows a better understanding and
forecasting of species' ranges under changing environmental conditions
(Maiorano et al., 2013). To support this, airborne or satellite sensors
can deliver a large amount of observations pertaining to the response
variable at a very high spatiotemporal resolution for both animal and
plant organisms (e.g. drone multispectral images, LiDAR or high-re-
solution satellite data). Temporal stacking thus further allows tracking
population dynamics and dispersal, which are both key variables to
build hybrid and process-based models such as dynamic range models.
Such observations can then be transformed from occurrences to abun-
dances. Ultimately, gathering a large amount of data to build models
should allow correlative SDMs to better estimate the true response
curves along environmental gradients.

Over the last decade, several studies have questioned the ability of
SDMs to predict the persistence of species when these models are pro-
jected into warming conditions. Indeed, some species may be able to
escape the negative effects of climate warming by moving into or per-
sisting in microrefugia with unusual and stable climate conditions
(Ashcroft and Gollan, 2013), or by adapting to new conditions. In all
these cases, remotely sensed data of high spatial resolution could be
used in SDMs to better capture microclimatic conditions (e.g. soil hu-
midity, surface and air temperature). However, important challenges
remain in determining to which extent microclimate detected by re-
mote sensing can be scaled and coupled to climate change projections
from broader scale Earth system models. Indeed, models such as re-
gional climate models provide values and anomalies of e.g. 2 m air
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temperature, precipitations, and cloudiness and it remains to be tested
whether relationships between microclimate detected by remote sen-
sing and climate from e.g. regional climate models can be described
statistically and later projected into a future climate. However, remote
sensing products could be used to bias-correct Regional Climate Modes
and Global Climate Models outputs (e.g. Lange, 2019).

Land cover has been identified as one of the thirteen terrestrial ECVs
because of its feedbacks on climate through the modification of water
and energy exchanges with the atmosphere. Land use and land-use
change, assessed from the local to the global scale, are typically more
difficult to map and in many cases cannot be remotely sensed. As a
consequence, spatially-explicit data of land use are less available and
land-use changes, variability, and intensity are often neglected in SDMs,
despite their potentially critical importance for species distributions.
Despite recent progress to develop indicators of changes in manage-
ment and land-use intensity based on remote sensing data, online access
to spatially explicit data of land use can be improved. This is particu-
larly critical to identify the contribution of land use in SDMs applied as
explanatory tools and to improve the accuracy of projections of SDMs
integrated in monitoring programs.

4.1. In situ monitoring, modeling, and remote sensing

Although developments of remote sensing and SDM techniques have
occasionally intersected over the last 30 years, combining these two
fields better has great potential for future scientific progress. In line
with Franklin and colleagues (Franklin et al., 2016) and others, we
advocate a closer integration of remote sensing in the monitoring and
modeling of species and ecosystems to better understand and predict
current and future impacts of global change drivers on biodiversity
(Fernandez et al., 2019). We stress that models should serve the same
fundamental role in ecological monitoring as in any other scientific
activity; that is, both the a priori guiding of monitoring designs and the
a posteriori guiding of data analyses. Essential elements of the mon-
itoring design are management actions, replicated spatial climatic
gradients, as well as temporal resolution and extents that capture both
fast and slow processes. Ecosystem-based monitoring should be dy-
namic and adaptive in the sense that models and monitoring designs are
iteratively improved by new empirical results, new technologies, and
the evolving needs of stakeholders (Ims and Yoccoz, 2017; Fig. 4). Once
conceptual models (Fig. 4(a)) and appropriate monitoring designs
(Fig. 4(b)) have been built, field data can be collected (Fig. 4(c)) for
tracking the trajectories of individual species or the entire ecosystems.
In this context, SDMs can serve as tools to identify the main drivers of
changes or to project the fate of species or ecosystems (by e.g. stacked
SDMs; Calabrese et al., 2014; Guisan and Rahbek, 2011; Fig. 4(d)).
Finally, new field monitoring can later validate projections of SDMs and
the robustness of conceptual models (Fig. 4(e)). Here, remote sensing
data can strongly contribute to adaptive monitoring programs by pro-
viding both additional data that complement field monitoring and ob-
servations for the validation of SDM projections in-between two field
campaigns that are often expensive in terms of time and money.

A better integration of in situ and remote sensing observations
through SDMs will also contribute to devise monitoring systems capable
to provide consistent biodiversity data for addressing conservation
targets in multi-scale policy contexts ranging from subnational to na-
tional and global. A major area of application is the production of data
informing on EBVs for species populations, which typically require in-
terpolation and extrapolation models with the view of obtaining con-
tinuous and temporally consistent probabilistic species occurrence data
from sparsely-distributed observations. These model-derived data are
critical for deriving consistent and scalable biodiversity change in-
dicators that can accommodate the reporting needs of multiple man-
agement programs and policy targets (Jetz et al., 2019; Navarro et al.,
2017).

The SDGs are one of the key global frameworks for addressing the
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environmental challenges of the Anthropocene. From a biodiversity
perspective, to safeguard life below water (SDG 14) and life on land
(SDG 15) it is crucial to characterize and understand current species
distributions and how these may change under future land use and
climate scenarios. SDMs make an essential contribution to providing
this information but have several important limitations that can com-
promise their accuracy and hence the effectiveness of resulting con-
servation interventions and environmental policies. We suggest that,
together with novel methodological applications such as the temporal
image stacking, currently available and upcoming remote sensing data
can alleviate or resolve many of the data gaps that constrain SDMs.
However, there is the risk that non-specialists may unintentionally
misinterpret remote sensing data, and that key data requirements for
SDMs are not fully appreciated. We argue that greater collaboration
between the two communities through the joint development of data
platforms with standardized metadata and documentation will be a key
step in achieving the full potential of remote sensing data and products
for SDMs, thereby supporting more effective conservation monitoring,
management, and policy decisions for a sustainable future.
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