GEO-GNOME Global Mountain Explorer

Visualizing and comparing commonly applied mountain definitions

Davnah Payne, Global Mountain Biodiversity Assessment Carolina Adler, Mountain Research Initiative

 $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

GEO-GNOME

Background

^b UNIVERSITÄT BERN

- SEO-GNOME: Group on Earth Observations Global Network for Observations and Information in Mountain Environments
- > GEO Work Programme Initiative 2017-2019
- > Leadership
 - Mountain Research Initiative (Carolina Adler)
 - Institute of Atmospheric Sciences and Climate (Elisa Palazzi)
- > Community
 - Scientific & non-scientific organizations
 - Divers competences & topics

Background

^b UNIVERSITÄT BERN

- Mountains are globally distributed
- > Mountains provide societal benefits
- > Mountains are home to many exposed human populations
- > Mountain regions are sensitive to global change
- > Important to monitor mountain environment & response to drivers
- > Important to improve policies and practices

- Facilitate access to fragmented data (past / present / future) to support examination of drivers, conditions & trends at different scales
- Improve understanding of mountain regions & ability to provide policy and investment-relevant advice
- Create & foster capacity and know-how to combine data across globally distributed environments to meet emerging policy needs
- > Focus on science & policy

- > Accurately delineate mountain regions using best available data
- Compile data that quantify ecosystem services, socio-economic measures and drivers
- Improve understanding & foresight through focused campaigns
- > Develop indicator capacity that responds to future policy needs
- > Report periodically on State of the World's Mountains
- > Obvious need for data & data infrastructure

U

GEO-GNOME GLOBAL MOUNTAIN EXPLORER

- > 3 widely used mountain definitions
 - K1 Kapos et al. 2000: proposed for developing a map of the world's mountain forests
 - K2 Körner et al. 2011: proposed for biodiversity research and biogeography
 - K3 Karagulle et al. 2017: Ecological Land Units (ELUs) proposed for multiple applications, not mountain-specific

Methods: K1

b UNIVERSITÄT BERN

> 6 classes based on ruggedness & elevation

Class	Elevation	Slope	Relative Relief	Global Area	Global Area
	(m)	(%)	(m)	(10 ⁶ km²)	(%)
1	>4500	Not used	Not used	1.8	1.2
2	3500 - 4499	Not used	Not used	2.7	1.8
3	2500 - 3499	Not used	Not used	6.9	4.7
4	1500 - 2499	> 3.5	Not used	5.3	3.6
5	1000 -1499	> 8.75 (OR)	> 300	6.2	4.2
6	300 - 999	Not used	>300	13.0	8.8
L	1	b	Global Totals	35.9	24.3

h

II,

> 7 classes based on ruggedness only & associated with thermal belts

Thermal belts	Area (Mio km ²)	M (%)
1. Nival (<3.5°C, GS < 10 days)	0.53	3.24
2. Upper alpine (<3.5 °C, GS > 10 days < 54 days)	0.75	4.53
3. Lower alpine $<6.4^{\circ}$ C, GS $<$ 94 days)	2.27	13.74
The treeline		
4. Upper montane (>6.4 \leq 10 °C)	3.39	20.53
5. Lower montane (>10 \leq 15 °C)	3.74	22.64
6. Remaining mountain area with frost (>15°C)	1.34	8.11
7. Remaining mountain area without frost (>15°C)	4.49	27.22
Total	16.51	100.00

Methods: K2

^b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Methods: K3

^b UNIVERSITÄT BERN

> 4 classes based on slope, relative relief, and profile

Mountain Class	Slope Class (%)	Relative Relief (m)	Profile (%)	Global Area (km²)	Global Area (%)
High Mountains	81 -100	> 900	Not used		
	51 - 80	> 900	> 50% of all cells in the NAW are high slope	12,579,032	9.4
Scattered High Mountains	51 - 80	> 900	≤ 50% of lowland cells in the NAW are high slope	2,563,661	1.9
Low Mountains	81 - 100	301 – 900	Not used		
	51 - 80	301 - 900	> 50% of all cells in the NAW are high slope	12,519,699	9.3
Scattered Low Mountains	51 - 80	301 - 900	≤ 50% of lowland cells in the NAW are high slope	13,208,399	9.8
			Global Totals	40,869,376	30.5

Methods: K1 – K2 – K3

D UNIVERSITÄT BERN

> 3 widely used mountain definitions

Global Mountain Characterization	Total Global Land Surface Area (10 ³ km²), Excluding Antarctica	Total Area (10 ³ km ²) of Global Land Surface Occupied by Mountains	Total Percent (%) of Global Land Surface Occupied by Mountains
К1	133,724	35,238	26.4
К2	133,724	16,434	12.3
КЗ	134,088	40,869	30.5

Large differences are important in the context of sustainable mountain development and policies!

Methods: online tool

^b UNIVERSITÄT BERN

- > Individual layer visualization
- > Comparative layer visualization
- > Query of individual pixels
- > Layers available for unrestricted download
 - GME website
 - University of Bern server
 - <u>Caucasus GeoNode</u>
- Additional resources
 - <u>GMBA mountain inventory</u>

Contributors & partners

^b UNIVERSITÄT BERN

The Mountain Research Initiative Advancing Global Change Research in Mountains

Davnah Payne, www.gmba.unibe.ch

 $u^{\scriptscriptstyle b}$

^b UNIVERSITÄT BERN

CDE CENTRE FOR DEVELOPMENT AND ENVIRONMENT

Jürg Krauer, www.cde.unibe.ch

Charlie Frey, www.esri.com

Carolina Adler, mri.scnatweb.ch

Roger Sayre, www.usgs.gov

