Global Mountain Biodiversity Assessment (GMBA)

A standardized delineation of the world's mountains

 

DOWNLOAD the latest version of the GMBA inventory

The GMBA mountain inventory is useful for various applications ranging from comparative research in mountain biodiversity to the spatial placement of biodiversity inventories and conservation planning. See below for a list of examples.

Methods

This inventory is based on the GMBA definitions of mountains and climatic belts. Details on the polygon delineation and additional information are available in Körner et al. 2017.

Versions

General information about the various files and formats, as well as log files of changes between subsequent versions are available in the online repository.

  • V1.0 includes 1003 mountain ranges with their name, coordinates, surface of mountain terrain stratified by dominant life zones, and human population estimates
  • V1.1 is identical to V1.0 but a number of polygon names in English have been corrected for typos and mistakes
  • V1.2 (latest) includes approximately 50 more polygons, primarily in Asia and South America

Applications

Citations

  • Moraes et al. (2017). Integrative overview of the herpetofauna from Serra Da Mocidade, a granitic mountain range in northern Brazil. ZooKeys 2017(715): 103-159 (DOI: 10.3897/zookeys.715.20288)
  • Payne et al. (2017). Opportunities for research on mountain biodiversity under global change. Current Opinion in Environmental Sustainability 29: 40-47 (DOI: 10.1016/j.cosust.2017.11.001)
  • Smith (2018). Janzen’s mountain passes hypothesis is comprehensively tested in its fifth decade. Proceedings of the National Academy of Sciences of the United States of America 115(49): 12337-12339 (DOI: 10.1073/pnas.1817774115)
  • Musthafa et al. (2018). Comparative study of spatial patterns and ecological niches of beetles in two Malaysian mountains elevation gradients. Journal of Insect Conservation 22 (5-6): 757-769 (DOI: 10.1007/s10841-018-0099-z)
  • Araneda et al. (2018). Bird diversity along elevational gradients in the Dry Tropical Andes of northern Chile: The potential role of Aymara indigenous traditional agriculture. PLoS ONE 13(12): e020754 (DOI: 10.1371/journal.pone.0207544)
  • Wen et al. (2018). Abundance of small mammals correlates with their elevational range sizes and elevational distributions in the subtropics. Ecography 41(11): 1888-1898 (DOI: 10.1111/ecog.03558)
  • Wen et al. (2018). Abundance–occupancy and abundance–body mass relationships of small mammals in a mountainous landscape. Landscape Ecology 33(10): 1711-1724 (DOI: 10.1007/s10980-018-0695-z)
  • Antonelli et al. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience 11(10): 718-725 (DOI: 10.1038/s41561-018-0236-z)
  • Rocchia et al. (2018). Can the effect of species ecological traits on birds’ altitudinal changes differ between geographic areas? Acta Oecologica 92: 26-34 (DOI: 10.1016/j.actao.2018.08.001)
  • Sayre et al. (2018). A new high-resolution map of world mountains and an online tool for visualizing and comparing characterizations of global mountain distributions. Mountain Research and Development 38(3): 240-249 (DOI: 10.1659/MRD-JOURNAL-D-17-00107.1)
  • Elsen et al. (2018). Global patterns of protection of elevational gradients in mountain ranges. Proceedings of the National Academy of Sciences of the United States of America 115(23): 6004-6009 (DOI: 10.1073/pnas.1720141115)
  • Quintero and Jetz (2018). Global elevational diversity and diversification of birds. Nature 555(7695): 246-250 (DOI: 10.1038/nature25794)
  • Nürk et al. (2018). Are the radiations of temperate lineages in tropical alpine ecosystems pre-adapted? Global Ecology and Biogeography, 27(3): 334-345 (DOI: 10.1111/geb.12699)
  • Zhu et al. (2018). Effects of altitude on county economic development in China. Journal of Mountain Science 15(2): 406-418 (DOI: 10.1007/s11629-017-4393-0)
  • Yu et al. (2018). Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Global Ecology and Biogeography (DOI: 10.1111/geb.12827)
  • Borges et al. (2018). Dissecting bird diversity in the Pantepui area of endemism, northern South America. Journal of Ornithology 159(4): 1073-1086 (DOI: 10.1007/s10336-018-1576-6)
  • Hoorn et al. (2018). Mountains, climate and biodiversity: an introduction. Mountains, Climate and Biodiversity, Wiley
  • Beria et al. (2018). Understanding snow hydrological processes through the lens of stable water isotopes. Water 5(6): e1311. (DOI:10.1002/wat2.1311)
  • Onditi et al. (2019). Morphological and genetic characterization of Mount Kenya brush-furred rats (Lophuromys Peters 1874); relevance to taxonomy and ecology. Mammal Research (DOI:10.1007/s13364-019-00470-1)
  • Torres et al. (2019). Mountain summit detection with Deep Learning: evaluation and comparison with heuristic methods. Applied Geomatics (DOI: 10.1007/s12518-019-00295-2)
  • Wrzesien et al. (2019). Characterizing biases in mountain snow accumulation from global data sets. Water Resources Research 55(11): 9873-9891 (DOI: 10.1029/2019WR025350)
  • Callisto et al. (2019). A Humboldtian approach to mountain conservation and freshwater ecosystem services. Frontiers in Environmental Sciences (DOI: 10.3389/fenvs.2019.00195)
  • Onditi et al. (2019). Morphological and genetic characterization of Mount Kenya brush-furred rats (Lophuromys Peters 1874); relevance to taxonomy and ecology. Mammal Research (DOI: 10.1007/s13364-019-00470-1)
  • Colón López and Restrepo (2019). Water quality and socio-economic indicators are linked in a tropical watershed: emerging implications for the sustainable management of waterscapes. Wetlands (DOI: 10.1007/s13157-019-01232-0)
  • Onipchenko et al. (2019). Low floristic richness of afro-alpine vegetation of Mount Kenya is related to its small area. Alpine Botany (DOI: 10.1007/s00035-019-00229-z)
  • Lievens et al. (2019). Snow depth variability in the Northern Hemisphere mountains observed from space. Nature Communications:10(4629) (DOI: 10.1038/s41467-019-12566-y)
  • Chakraborty (2019). Mountains as vulnerable places: a global synthesis of changing mountain systems in the Anthropocene. GeoJournal:e02862 (DOI: 10.1007/s10708-019-10079-1)
  • Ge et al. (2019). Climatic seasonality is linked to the occurrence of the mixed evergreen and deciduous broad-leaved forests in China. Ecosphere (9):e02862 (DOI: 10.1002/ecs2.2862)
  • Rahbek et al. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365(6458)": 1108-1113 (DOI: 10.1126/science.aax0149)
  • Encalada et al. (2019). A global perspective on tropical montane rivers. Science 365(6458)": 1124-1129 (DOI: 10.1126/science.aax1682)
  • Porro et al. (2019). Could plant diversity metrics explain climate-driven vegetation changes on mountain summits of the GLORIA network? Biodiversity and Conservation. (DOI: 10.1007/s10531-019-01837-1)
  • Sati (2019). Himalaya on the Threshold of Change. Advances in Global Change Research 66 (DOI: 10.1007/978-3-030-14180-6)
  • Kidane et al. (2019). Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecology and Conservation (DOI: 10.1016/j.gecco.2019.e00670)
  • Bruelheide et al (2019). sPlot - a new tool for global vegetation analyses. Journal of Vegetation Science (DOI: 10.1111/jvs.1271)
  • Bärtschi et al. (2019). Elevational richness patterns of shpingid moths support area effects over climatic drivers in a near-global analysis. Global Ecology and Biogeography (DOI: 10.1111/geb.12903)
  • Klein et al. (2019). An integrated community and ecosystem-based approach to disaster risk reduction in mountain systems. Environmental Science and Policy 94:143-152. (DOI: 10.1016/j.envsci.2018.12.034)
  • Klein et al. (2019). Catalyzing transformations to sustainability in the world's mountains. Earths' Future (DOI: 10.1029/2018EF001024)
  • Kafash, et al. (2019). Environmental predictors for the distribution of the Caspian green lizard, Lacerta strigata eichwald, 1831, along elevational gradients of the Elburz mountains in northern Iran. Turkish Journal of Zoology 43(10):106-113. (DOI: 10.3906/zoo-1808-15)
  • Vieira et al. (2019). Ecological aspects of arbuscular mycorrhizal fungal communities in different habitat types of a Brazilian mountainous area. Ecological Research 34(1): 182-192 (DOI: 10.1111/1440-1703.1061)
  • Price et al. (2019). Mapping mountain areas: learning from Global, European and Norwegian perspectives. Journal of Mountain Science 16(1) (DOI: 10.1007/s11629-018-4916-3)
  • Kuzemko et al. (2019). Palaearctic Grasslands 40. Eurasian Dry Grassland Group. (DOI: 10.21570/EDGG.PG.40)
  • Smyčka (2019). Evolutionary origin and diversification of the European mountain flora (Thesis)
  • Ahmad et al. (2020). Patterns of plant communities along vertical gradient in Dhauladhar Mountains in Lesser Himalayas in North-Western India. Science of The Total Environment 716 (DOI: 10.1016/j.scitotenv.2020.136919)
  • Bian et al. (2020). Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing 162: 63-76 (DOI: 10.1016/j.isprsjprs.2020.02.011)
  • Chakraborty (2020). Mountains as a global heritage: arguments for conserving the natural diversity of mountain regions. Heritage 2020, 3(2), 198-207 (DOI: 10.3390/heritage3020012)
  • Dagallier et al. (2020). Cradles and museums of generic plant diversity across tropical Africa. New Phytologist 225(5): 2196-2213 (DOI: 10.1111/nph.16293)
  • Elsen et al. (2020). Topography and human pressure in mountain ranges alter expected species responses to climate change. Nature communications 11: 1984 (DOI: 10.1038/s41467-020-15881-x)
  • Fanelli et al. (2020). Cheilospirura hamulosa in the Rock Partridge (Alectoris graeca saxatilis): epidemiological patterns and prediction of parasite distribution in France. Diversity 12(12): 484(DOI: 10.3390/d12120484)
  • García‐Rodríguez et al. (2020). Effects of evolutionary time, speciation rates and local abiotic conditions on the origin and maintenance of amphibian montane diversity. Global Ecology and Biogeography (DOI: 10.1111/geb.13249)
  • Gomez-Diaz and Villalobos (2020). Montañas: cómo se definen y su importancia para la biodiversidad y la humanidad. CIENCIA ergo-sum, 27(2) (DOI: 10.30878/ces.v27n2a9)
  • Guedes et al. (2020). Diversity, endemism, and evolutionary history of montane biotas outside the Andean region. In: Rull V., Carnaval A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham (DOI: 10.1007/978-3-030-31167-4_13)
  • Hrivniak et al. (2020). The impact of Miocene orogeny for the diversification of Caucasian Epeorus (Caucasiron) mayflies (Ephemeroptera: Heptageniidae). Molecular Phylogenetics and Evolution 146: 106735 (DOI: 10.1016/j.ympev.2020.106735)
  • Hu et al. (2020). Contrasting floristic diversity of the Hengduan Mountains, the Himalayas and the Qinghai-Tibet Plateau sensu stricto in China. Frontiers in Ecology and Evolution: Biogeography and Macroecology (DOI: 10.3389/fevo.2020.00136 )
  • Immerzeel et al. (2020). Importance and vulnerability of the world's water towers. Nature 577(7790): 364-369 (DOI: 10.1038/s41586-019-1822-y)
  • Jäger al. (2020). Grassland biomass balance in the European Alps: current and future ecosystem service perspectives. Ecosystem Services 45 (DOI: 10.1016/j.ecoser.2020.101163)
  • Kellner and Brunner (2020). Reservoir governance in world's water towers needs to anticipate multi‐purpose use. Earth's Future e2020EF001643 (DOI: 10.1029/2020EF001643)
  • Körner (2020). Tools shape paradigms of plant-environment interactions. In Progress in Botany Vol. 82 (DOI: 10.1007/124_2020_41)
  • Magalhães et al. (2020). Evidence of introgression in endemic frogs from the campo rupestre contradicts the reduced hybridization hypothesis. Biological Journal of the Linnean Society blaa142 (DOI: 10.1093/biolinnean/blaa142)
  • Notarnicola (2020). Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sensing of Environment 243(111781): 364-369 (DOI: 10.1016/j.rse.2020.111781)
  • Notarnicola (2020). Observing snow cover and water resource changes in the high mountain Asia region in comparison with global mountain trends over 2000–2018. Remote Sensing 12(23): 3913 (DOI: 10.3390/rs12233913)
  • Pachoud (2020). Collective action for territorial quality differentiation of cheese in mountain areas: Case studies of the Campos de Cima da Serra in Brazil and the Province of Trento in Italy. Thesis
  • Schoville and Rovito (2020). Biogeography of North American Highlands. Encyclopedia of the World's Biomes 530-542 (DOI: 10.1016/B978-0-12-409548-9.11781-6)
  • Su and Xiao (2020). Research and practice on socio-ecological systems resilience over cryosphere affected areas: progress and prospects. (Link)
  • Tenorio et al. (2020). The contribution of global mountains to the latitudinal diversity gradient. bioRxiv (DOI: 10.1101/2020.07.04.18822)
  • Testolin et al. (2020). Global distribution and bioclimatic characterization of alpine biomes. Ecography (DOI: 10.1111/ecog.05012)
  • Tito et al. (2020). Mountain ecosystems as natural laboratories for climate change experiments. Frontiers in Forests and Global Change (DOI: 10.3389/ffgc.2020.00038)
  • Thorn et al. (2020). A systematic review of participatory scenario planning to envision mountain social-ecological systems futures. Ecology and Society 25(3): 6 (DOI: 10.5751/ES-11608-250306)
  • Verrall and Pickering (2020). Alpine vegetation in the context of climate change: A global review of past research and future directions. Science of The Total Environment (DOI: 10.1016/j.scitotenv.2020.141344)
  • Viviroli et al. (2020). Increasing dependence of lowland populations on mountain water resources. Nature Sustainability (DOI: 10.1038/s41893-020-0559-9)
  • Aalto et al. (2021). Cryogenic land surface processes shape vegetation biomass patterns in northern European tundra. Communications Earth & Environment 2(1):222 (DOI: 10.1038/s43247-021-00292-7)
  • Abbas et al. (2021). Vegetation dynamics along altitudinal gradients in the Shigar valley (Central Karakorum) Pakistan: zonation, physiognomy, ecosystem services and environmental impacts. Pakistan Journal of Botany 53(5) (DOI: 10.30848/PJB2021-5(43))
  • Ahmad et al. (2021). Niche width analyses facilitate identification of high-risk endemic species at high altitudes in western Himalayas. Ecological Indicators 126:107653 (DOI: 10.1016/j.ecolind.2021.107653)
  • Biurrun et al. (2021). Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science (DOI: 10.1111/jvs.13050)
  • Bobrovski et al. (2021). Searching for ecology in species distribution models in the Himalayas. Ecological modelling 458(6): 109693 (DOI: 10.1016/j.ecolmodel.2021.109693)
  • Bolch and Christiansen (2021). Mountains, lowlands, and coasts: the physiography of cold landscapes. Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition): 199-213 (DOI: 10.1016/B978-0-12-817129-5.00020-2)
  • Camacho et al. (2021). Spatial phylogenomics of acrobat ants in Madagascar—Mountains function as cradles for recent diversity and endemism. Journal of Biogeography (DOI: 10.1111/jbi.14107)
  • Chernykh et al. (2021). Challenges of assessment and mapping of ecosystem services in Bulgarian (Rhodope) and Russian (Altai) mountain protected areas in the context of post-socialist transformations and new conservation. Silva Balcanica 22(2):43-68 (DOI: 10.3897/silvabalcanica.22.e69861)
  • Christmann and Imma (2021). A synthesis and future research directions for tropical mountain ecosystem restoration. Scientific Reports 11(23948) (DOI: 10.1038/s41598-021-03205-y)
  • Correa-Diaz et al. (2021). The greening effect characterized by the Normalized Difference Vegetation Index was not coupled with phenological trends and tree growth rates in eight protected mountains of central Mexico. Forest Ecology and Management 496(2):119402 (DOI: 10.1016/j.foreco.2021.119402)
  • Dembicz et al. (2021). Fine-grain beta diversity in Palaearctic open vegetation: variability within and between biomes and vegetation types. Vegetation Classification and Survey 2: 293-304 (DOI:10.3897/VCS/2021/77193)
  • Ehrlich et al (2021). Population trends and urbanisation in mountain ranges of the world. Land 10(3) (DOI: 10.3390/land10030255)
  • Feng et al (2021). Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia. Nature Sustainability (DOI: 10.1038/s41893-021-00738-y5)
  • Figueroa et al (2021). Alpine, but not montane, seed plants constitute a biogeographically and climatically distinct species pool across the Americas. Land 10(3) (DOI: 10.22541/au.161969728.82703460/v1)
  • García-Rodríguez et al (2021). Amphibian speciation rates support a general role of mountains as biodiversity pumps(DOI: 10.1086/715500)
  • Grumbine and Xu (2021). Mountain futures: pursuing innovative adaptations in coupled social–ecological systems. Frontiers in Ecology and the Environment (DOI: 10.1002/fee.2345)
  • Hofmann et al. (2021). Unravelling climate change impacts from other anthropogenic influences in a subalpine lake: a multi-proxy sediment study from Oberer Soiernsee (Northern Alps, Germany). Hydrobiologia (DOI: 10.1007/s10750-021-04640-8)
  • Karger et al. (2021). Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nature Ecology and Evolution (DOI: 10.1038/s41559-021-01450-y)
  • Kalvoda and Emmer (2021). Mass wasting and erosion in different morphoclimatic zones of the Makalu Barun region, Nepal Himalaya. Geografiska Annaler: Series A, Physical Geography (DOI: 10.1080/04353676.2021.2000816)
  • Kellner and Brunner (2021). Reservoir governance in world's water towers needs to anticipate multi‐purpose use. Earth's Future 9(1) (DOI: 10.1029/2020EF001643)
  • Koffi et al. (2021). Monitoring Arctic populations dynamics and urbanisation Potential of the GHSL in remote regions. In European Commission, Joint Research Centre, Atlas of the Human Planet 2020 – Open geoinformation for research, policy, and action, EUR 30516, European Commission, Luxembourg (DOI: 10.2760/16432)
  • Körner (2021). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Third Edition). (DOI: 10.1007/978-3-030-59538-8)
  • Körner et al. (2021). Mountain definitions and their consequences. Alpine Botany (DOI: 10.1007/s00035-021-00265-8)
  • Körner and Hiltbrunner (2021). Why is the alpine flora comparatively robust against climatic warming? Diversity 13(8): 383 (DOI: 10.3390/d13080383)
  • Kong et al. (2021). A mountain summit recognition method based on improved faster R-CNN. Complexity 3: 1-10 (DOI: 10.1155/2021/8235108)
  • Latif et al. (2021). Climatic trends variability and concerning flow regime of Upper Indus Basin, Jehlum, and Kabul river basins Pakistan. Theoretical and Applied Climatology (DOI: 10.1007/s00704-021-03529-9)
  • León-Tapia et al. (2021). Role of Pleistocene climatic oscillations on genetic differentiation and evolutionary history of the Transvolcanic deer mouse Peromyscus hylocetes (Rodentia: Cricetidae) throughout the Mexican central highlands. Journal of Zoological Systematics and Evolutionary Research (DOI: 10.1111/jzs.12541)
  • Llopis et al. (2021). Year-to-year ecosystem services supply in conservation contexts in north-eastern Madagascar: Trade-offs between global demands and local needs. Ecosystem Services 48: 101249 (DOI: 10.1016/j.ecoser.2021.101249)
  • Li et al. (2021). Mountains act as museums and cradles for hemipteran insects in China: Evidence from patterns of richness and phylogenetic structure. Global Ecology and Biogeography 11(1): 5296(DOI: 10.1111/geb.13276)
  • Li et al. (2021). Diversity of flower visiting beetles at higher elevations on the Yulong Snow Mountain (Yunnan, China). Diversity 13(11): 64(DOI: 10.3390/d13110604)
  • Lu (2021). Mountain surface processes and regulation. Scientific Reports 11(1): 5296(DOI: 10.1038/s41598-021-84784-8)
  • Macek et al. (2021). Elevational range size patterns of vascular plants in Himalaya contradict Rapoport’s rule. Journal of Ecology (DOI: 10.1111/1365-2745.13772)
  • Manish et al. (2021). Inferring the factors for origin and diversifications of endemic Himalayan flora using phylogenetic models. Modeling Earth Systems and Environment (DOI: 10.1007/s40808-021-01251-z)
  • Manish et al. (2021). Species richness, phylogenetic diversity and phylogenetic structure patterns of exotic and native plants along an elevational gradient in the Himalaya. Ecological Processes 64(1) (DOI: 10.1186/s13717-021-00335-z)
  • Minachilis et al. (2021). Climate change effects on multi-taxa pollinator diversity and distribution along the elevation gradient of Mount Olympus, Greece. Ecological Indicators 132: 108335 (DOI:10.1016/j.ecolind.2021.108335)
  • Minocha et al. (2021). Changes in soil chemistry and foliar metabolism of Himalayan Cedar (Cedrus deodara) and Himalayan Spruce (Picea smithiana) along an elevational gradient at Kufri, HP, India: the potential roles of regional pollution and localized grazing. Forests 12(4): 400(DOI: 10.3390/f12040400)
  • Oom (2021). Atlas of the Human Planet 2020. Open geoinformation for research, policy, and action. (DOI: 10.2760/16432)
  • Palmero-Iniesta et al. (2021). Recent forest area increase in Europe: expanding and regenerating forests differ in their regional patterns, drivers and productivity trends. European Journal of Forest Research (DOI: 10.1007/s10342-021-01366-z)
  • Popović et al. (2021). Gentiana asclepiadea l. from two high mountainous habitats: Inter-and intrapopulation variability based on species’ phytochemistry. Plants 10(1): 140 (DOI: 10.3390/plants10010140)
  • Sabatini et al. (2021). sPlotOpen – An environmentally balanced, open‐access, global dataset of vegetation plots. Global Ecology and Biogeography (DOI: 10.1111/geb.13346)
  • Segura Cajachagua (2021). New insights into the atmospheric mechanisms associated with precipitation variability in the southern tropical Andes over a range of time scales. (Thesis)
  • Skoulikidis (2021). Chapter 1 - Mountainous areas and river systems. Environmental Water Requirements in Mountainous Areas, pp. 1-50 (DOI: 10.1016/B978-0-12-819342-6.00009-9)
  • Song et al. (2021). Multi-dimensional evaluation of small mammal diversity in tree line habitats across the Three Parallel Rivers of Yunnan Protected Areas: Implications for conservation. Biodiversity Sciences 29(9): 1215-1228 (DOI: 10.17520/biods.2021006)
  • Stewart (2021). Evaluation of green microalgae biodiversity in the alpine ecosystem. PhD Thesis
  • Testolin et al. (2021). Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography (DOI: 10.1111/geb.13297)
  • Urban (2021). The geography and development of language isolates. Royal Society Open Science 8(4) (DOI: 10.1098/rsos.202232)
  • Viana Campos et al. (2021). Disentangling fine-scale effects of soil properties as key driver of plant community diversity on Roraima table mountain, Guayana Highlands. Plant Biosystems (DOI: 10.1080/11263504.2021.1985003)
  • Viana Campos et al. (2021). Local-scale environmental filtering shape plant taxonomic and phylogenetic diversity in an isolated Amazonian tepui (Tepequém table mountain). Evolutionary Ecology (DOI: 10.1007/s10682-021-10141-w)
  • Wang and Yang (2021). Waterbird composition and changes with wetland park construction at Lake Dianchi, Yunnan–Guizhou Plateau. Mountain Research and Development 41(1) (DOI: 10.1659/MRD-JOURNAL-D-19-00055.1)
  • Bibi et al. (2022). Indigenous knowledge and quantitative ethnobotany of the Tanawal area, Lesser Western Himalayas, Pakistan. PlosONE 17(2):e0263604 (DOI: 10.1371/journal.pone.0263604)
  • Bolitho and Newell (2022). Extensive range contraction predicted under climate warming for two endangered mountaintop frogs from the rainforests of subtropical Australia. Scientific reports 12 (DOI: 10.1038/s41598-022-24551-5)
  • Boschman and Condamine (2022). Mountain radiations are not only rapid and recent: Ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations. Global and Planetary Change: 103704 (DOI: 10.1016/j.gloplacha.2021.103704)
  • Emmer A. (2022). Lake evolution and glacial lake outburst floods (GLOFs) in deglaciating mountains: from regional insights to global contexts. (Link)
  • Feng et al. (2022). Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nature Sustainability 5:444–451 (DOI: 10.1038/s41893-022-00854-3)
  • Figueroa et al (2022). Contrasting patterns of phylogenetic diversity and alpine specialization across the alpine flora of the American mountain range system. Alpine Botany10(3) (DOI: 10.1007/s00035-021-00261-y)
  • Huang et al. (2022). Importance and vulnerability of water towers across Northwest China. Advances in Climate Change Research (DOI: 10.1016/j.accre.2021.12.002)
  • Griessinger et al. (2022). Decreasing water availability as a threat for traditional irrigation-based land-use systems in the Mustang Himalaya/Nepal. In: Schickhoff U., Singh R., Mal S. (eds) Mountain Landscapes in Transition. Sustainable Development Goals Series. Springer, Cham. (DOI: 10.1007/978-3-030-70238-0_8)
  • Gurgiser et al. (2022). Rising slopes—Bibliometrics of mountain research 1900–2019. PlosONE (DOI: 10.1371/journal.pone.0273421)
  • Iqbal et al. (2022). Distribution dynamics of Arnebia euchroma (Royle) I.M.Johnst. and associated plant communities in Trans-Himalayan Ladakh region in relation to local livelihoods under climate change. Trees, Forests and People 7:100213 (DOI: 10.1016/j.tfp.2022.100213)
  • Körner (2022). A global framework of mountain ecology. Nepalese Journal of Zoology 6 (S1) (DOI: 10.3126/njz.v6iS1.50503)
  • Li et al. (2022). Strategic protection of landslide vulnerable mountains for biodiversity conservation under land-cover and climate change impacts. Proceedings of the National Academy of Sciences 119(2):e2113416118 (DOI: 10.1073/pnas.2113416118)
  • Manish et al. (2022). Inferring the factors for origin and diversifications of endemic Himalayan flora using phylogenetic models. Modeling Earth Systems and Environment 8(2):2591-2598 (DOI: 10.1007/s40808-021-01251-z)
  • Matilullah et al. (2022). Composition and structure of plant communities in the moist temperate forest ecosystem of the Hindukush mountains, Pakistan. Brazilian Journal of Biology 82 (DOI: 10.1590/1519-6984.266637)
  • Mendoza-Fernández et al. (2022). The fate of endemic species specialized in island habitat under climate change in a Mediterranean high mountain. Plants 11(23):3193 (DOI: 10.3390/plants11233193)
  • Michel et al. (2022). Preferential substrate use decreases priming effects in contrasting treeline soils. Biochemistry (DOI: 10.1007/s10533-022-00996-8)
  • Oswald et al. (2022). Colonization rather than fragmentation explains the geographical distribution and diversification of treefrogs endemic to Brazilian shield sky islands. Journal of Biogeography 49(4):682-698 (DOI: 10.1111/jbi.14320)
  • Pepin et al. (2022). Climate changes and their elevational patterns in the mountains of the world. Reviews of Geophysics 60(1): e2020RG000730 (DOI: 10.1029/2020RG000730)
  • Rhoades et al. (2022). Asymmetric emergence of low-to-no snow in the midlatitudes of the American Cordillera. Nature Climate Change (DOI: 10.1038/s41558-022-01518-y)
  • Schickhoff et al. (2022). The World’s Mountains in the Anthropocene. In: Schickhoff U., Singh R., Mal S. (eds) Mountain Landscapes in Transition. Sustainable Development Goals Series. Springer, Cham. (DOI: 10.1007/978-3-030-70238-0_1)
  • Smyka et al. (2022). Tempo and drivers of plant diversification in the European mountain system. Nature Communication 13(1) 2750 (DOI: 10.1038/s41467-022-30394-5)
  • Snethlage et al. (2022). A hierarchical inventory of the world’s mountains for global comparative mountain science. Scientific Data 9:149 (DOI: 10.1038/s41597-022-01256-y)
  • Sofi et al. (2022). TDistribution dynamics of Arnebia euchroma (Royle) I.M.Johnst. and associated plant communities in Trans-Himalayan Ladakh region in relation to local livelihoods under climate change. Trees, Forests and People 7, 100213 (DOI: 10.1016/j.tfp.2022.100213)
  • Vanacker et al. (2022). The effect of natural infrastructure on water erosion mitigation in the Andes. Soil 8:133-147 (DOI: 10.5194/soil-8-133-2022)
  • Viana Campos et al. (2022). Local-scale environmental filtering shape plant taxonomic and phylogenetic diversity in an isolated Amazonian tepui (Tepequém table mountain). Evolutionary Ecology 36:55-73(DOI: 10.1007/s10682-021-10141-w)
  • Wang et al. (2022). Geographic and climatic constraints on bioregionalization of European ants. Journal of Biogeography(DOI: 10.1111/jbi.14546)
  • Wen et al. (2022). Altitudinal dispersal process drives community assembly of montane small mammals. Ecography (DOI: 10.1111/ecog.06318)
  • Zheng et al. (2022). Plant community assembly is jointly shaped by environmental and dispersal filtering along elevation gradients in a semiarid area, China. Frontiers in Plant Sciences (DOI: 10.3389/fpls.2022.1041742)
  • Chu et al. (preprint). Snow cover on the Tibetan Plateau and topographic controls. Preprints.org (DOI: 10.20944/preprints202307.0030.v1)
  • Dragonetti et al. (preprint). The exposure of the world’s mountains to global change drivers. ResearchSquare (DOI: 10.21203/rs.3.rs-3008744/v1)
  • Galvan-Cisneros et al. (2023). Altitude as environmental filtering influencing phylogenetic diversity and species richness of plants in tropical mountains. Journal of Mountain Science 20:285-298 (DOI: 10.1007/s11629-022-7687-9)
  • Gao et al. (2023). Spatiotemporal change analysis and prediction of the Great Yellow River Region (GYRR) land cover and the relationship analysis with mountain hazards. Land 12(2):340 (DOI: 10.3390/land12020340)
  • Guan et al. (2023). Synergistic impact of complex topography and climate variability on the loss of microclimate heterogeneity in Southeast Asia. Geophysical Research Letters 50(21):340 (DOI: 0.1029/2023GL104965)
  • Gwate et al. (2023). Assessing habitat suitability for selected woody range-expanding plant species in African mountains under climate change. Transactions of the Royal Society of South Africa (DOI: 10.1080/0035919X.2023.2205368)
  • He et al. (2023). Global distribution and climatic controls of natural mountain treelines. Global Change Biology (DOI: 10.1111/gcb.16885)
  • Kilwanila et al. (2023). Phylogeographic patterns of the Greater Cane Rat (Thryonomys Swinderianus) populations from Eastern, Western and Southern Africa and implications for wildlife conservation. Tropical Conservation Science (DOI: 10.1177/194008292312202)
  • Körner (2023). Concepts in alpine plant ecology. Plants 12(14): 2666 (DOI: 10.3390/plants12142666)
  • Kumar and Adhikari(2023). Natural snowmelt timing influences community structure and phenological patterns in alpine meadows, West Himalaya: A case study. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences (DOI: 10.1007/s40011-023-01509-9)
  • Marta et al. (2023). Heterogeneous changes of soil microclimate in high mountains and glacier forelands. Nature Communications 14 (DOI: 10.1038/s41467-023-41063-6)
  • Masviken et al. (2023). The relative importance of abiotic and biotic environmental conditions for taxonomic, phylogenetic, and functional diversity of spiders across spatial scales. Oecologia(DOI: 10.1007/s00442-023-05383-0)
  • Núñez-Mejía et al. (2023). Downscaling precipitation and temperature in the Andes: applied methods and performance—a systematic review protocol. Environmental Evidence 12(19)(DOI: 110.1186/s13750-023-00323-0)
  • Pinto et al. (2023). Phylogenetic diversity and structure in moist and dry upland forests in the semi-arid region of Brazil. Brazilian Journal of Biology 83 (DOI: 10.1590/1519-6984.274577)
  • Reader et al. (2023). Biodiversity mediates relationships between anthropogenic drivers and ecosystem services across global mountain, island and delta systems. Global Environmental Change 78:102612 (DOI: 10.1016/j.gloenvcha.2022.102612)
  • Sing et al. (2023). Mountain soils and climate change: importance, threats and mitigation measures. Understanding soils of mountainous landscapes, 3-21(DOI: 10.1016/B978-0-323-95925-4.00019-4)
  • Tokgöz and Güngör (2023). Ecosystem services provided by the Amanos Mountains using the DSPIR framework. Türkiye Peyzaj Araştırmaları Dergisi(DOI: 10.51552/peyad.1365621)
  • Urbach et al. (2023). Mountain biodiversity under change. In Safeguarding Mountain Social-Ecological, S. Schneiderbauer, P. Fontanella Pisa, J. Szarzynski, Eds. (DOI: 10.1016/B978-0-12-822095-5.00002-4)
  • Vallejos-Garrido et al. (2023). The importance of the Andes in the evolutionary radiation of Sigmodontinae (Rodentia, Cricetidae), the most diverse group of mammals in the Neotropics. Scientific Reports 13:2207(DOI: 10.1038/s41598-023-28497-0)
  • Vieira da Costa et al. (2023). Biodiversity and elevation gradients: Insights on sampling biases across worldwide mountains. Journal of Biogeography (DOI: 10.1111/jbi.14696)
  • Wang et al. (2023). The Nanling Mountains of southcentral China played a variable role as a barrier and refuge for birds depending upon landscape structure and timing of events. (DOI: 10.22541/au.167572812.26448865/v1)
  • Xu et al. (2023). The spatial patterns of diversity and their relationships with environments in rhizosphere microorganisms and host plants differ along elevational gradients. Frontiers in Microbiology 14 (DOI: 10.3389/fmicb.2023.1079113/full)
  • Yin et al. (2023). Aspect matters: unraveling microclimate impacts on mountain greenness and greening. Geophysical Research Letters 50(24): e2023GL105879(DOI: 10.1029/2023GL105879)
  • Zeidler et al. (2023). Homogenization and species compositional shifts in subalpine vegetation during the 60-year period. Acta Societatis Botanicorum Poloniae 92(1)(DOI: 10.5586/asbp/171689)
  • Schickhoff et al. (2024). The biodiversity crisis in the Anthropocene. In Geography and the Anthropocene, B. Gönençgil & M.E. Meadows Eds. (DOI: 10.26650/B/SS19.2024.001.05)
  • Wang et al. (2024).The Nanling Mountains of southern China played a variable role as a barrier and refuge for birds depending upon landscape structure and timing of events. Journal of Avian Biology(DOI: 10.1111/jav.03131)
  • Zhang et al. (2024).Three decades of oasis transition and its driving factors in Turpan–Hami Basin in Xinjiang, China: a complex network approach. Remote Sensing 16(3): 465(DOI: 10.3390/rs16030465)